Gnu Awk - Part 4 (HPR Show 2163)

Dave Morriss

Contents

Introduction
Recap of the last episode
Logical Operators

The nezt statemento

The BEGIN and END rules
Variables, arrays, loops, etc
Explaining variables o oo
Variable assignment oL oL L
Arithmetic operators
Assignment operators
Examples

Type conversion o
Increment and decrement operators
Arrays . .o
Looping through arrays

More built-in variableso
SUMMATY o e e e e
Links.

—_
= O © 00O TLUL R A W WNNNDN R/, = =

—

Introduction

This is the fourth episode of the series that b-yeezi and I are doing. These shows
are now collected under the series title “Learning Awk”.

Recap of the last episode
Logical Operators

We have seen the operators ‘&&’ (and) and ‘||” (or). These are also called
Boolean Operators. There is also one more operator ‘" (not) which we haven’t

http://hackerpublicradio.org/correspondents.php?hostid=300
http://hackerpublicradio.org/series.php?id=94

yet encountered. These operators allow the construction of Boolean expressions
which may be quite complex.

If you are used to programming you will expect these operators to have a
precedence, just like operators in arithmetic do. We will deal with this subject
in more detail later since it is relevant not only in patterns but also in other
parts of an Awk program.

The next statement

We saw this statement in the last episode and learned that it causes the processing
of the current input record to stop. No more patterns are tested against this
record and no more actions in the current rule are executed. Note that “next” is
a statement like “print”, and can only occur in the action part of a rule. It is
also not permitted in BEGIN or END rules (more of which anon).

The BEGIN and END rules

The BEGIN and END elements are special patterns, which in conjunction with
actions enclosed in curly brackets make up rules in the same sense that the
‘pattern {action} sequences we have seen so far are rules. As we saw in the
last episode, BEGIN rules are run before the main ‘pattern {action}’ rules are
processed and the input file is (or files are) read, whereas END rules run after
the input files have been processed.

It is permitted to write more than one BEGIN rule and more than one END
rule. These are just concatenated together in the order they are encountered by
Awk.

Awk will complain if either BEGIN or END is not followed by an action since
this is meaningless.

Variables, arrays, loops, etc

Learning a programming language is never a linear process, and sometimes
reference is made to new features that have not yet been explained. A number
of new features were mentioned in passing in the last episode, and we will look
at these in more detail in this episode.

Explaining variables

We saw the built-in variables like NR and NF earlier in the series, and you saw
in the last episode that you can create your own variables too. A variable, as
in other languages, is simply a named storage area that can hold a value. The

name must consist of letters, digits or the underscore. It may not start with a
digit, and there is a difference between upper case and lower case letters (‘sum’,
‘Sum’ and ‘SUM’ are different variables). Such simple variables which can hold a
single value are also called scalars.

A variable in Awk may contain a numeric value or a string. Awk deals with the
conversion of one to another as appropriate (though sometimes it needs help).

In Awk, unlike many other languages, it is not necessary to initialise variables
before using them. All variables start as an empty string which is converted to
zero as appropriate.

Variable assignment

Variables are set to values using assignment such as:

count = 3

As you saw in the last episode there are many types of assignment, for example:
used += $3

This means increment the contents of variable ‘used’ by the contents of field 3.
(There is an assumption here that field 3 contains a numeric value, of course.)

It’s a shorthand version of:
used = used + $3

This means add the contents of ‘used’ to the contents of field 3 and save the
result back in ‘used’.

The first time the variable is incremented its contents are taken to be zero. This
is normally bad practice in older and stricter compiled languages, but Awk is
more forgiving.

Since we have now started to look at writing arithmetic expressions it is probably
a good idea to review what the arithmetic operators are in Awk.

Arithmetic operators

It is important to note that all numbers in Awk are floating point numbers. This
fact can catch you out in some edge cases, which we will try to highlight as the
series progresses.

This list is based on the one from the GNU Awk User’s Guide. The operators
are listed in order of their precedence, highest to lowest.

x © y Exponentiation; z raised to the y power. ‘2 © 3’ has the value eight.
There is a “**’ operator but is not standard, and therefore not portable,
and will not be used here.

https://www.gnu.org/software/gawk/manual/html_node/index.html

- x Negation
+ x Unary plus; this can be used to force Awk to convert a string to a number.
x * y Multiplication

x / y Division; because all numbers in awk are floating-point numbers, the
result is not rounded to an integer — thus ‘3 / 4’ has the value 0.75, where
in Bash ‘echo $((3/4))’ returns 0.

x % y Remainder after z is divided by y. So ‘3 % 4’ is 3, ‘5 % 2’ is 1, and so on
X + y Addition.

X - y Subtraction.
Assignment operators
As you have seen arithmetic assignment operators (like +=) exist in Awk. These

are a shorthand form of more verbose assignments. The following table lists
these assignment operators (modified from the GNU Awk User’s Guide):

Operator Effect

variable += increment Add increment to the value of variable.
variable -= decrement Subtract decrement from the value of variable.
variable *= coefficient ~ Multiply the value of variable by coefficient.

variable /= divisor Divide the value of variable by divisor.

variable %= modulus Set variable to its remainder by modulus.

variable "= power Raise variable to the power power.
Examples

See the associated Awk script called arithmetic_assignment_operators.awk:

BEGIN{
x = 42; print "x is",x
x += 1; print "x += 1 is",x
x -= 1; print "x -= 1 is",x
x *= 2; print "x *= 2 is",x
x /= 2; print "x /= 2 is",x
x %= 5; print "x %= 5 is",x
x 7= 4; print "x "= 4 is",x
}

Note that everything here is in a BEGIN rule because we don’t want to process
a file, just run a little Awk program. Note also that semicolons are needed
as statement separators when there are multiple statements on a line, but not
otherwise.

https://www.gnu.org/software/gawk/manual/html_node/index.html
http://hackerpublicradio.org/eps/hpr2163/arithmetic_assignment_operators.awk

When run it produces the following output:

$ awk -f arithmetic_assignment_operators.awk
x is 42

x += 1 is 43

x -= 1 is 42

X *= 2 is 84

x /=2 is 42

X %= 5 is 2

x =4 is 16

Type conversion

As mentioned earlier, a variable in Awk may contain a numeric value or a string,
at any point in time. When converting from a number to a string, then the
conversion simply consists of a string version of the number. Converting from a
string to a number requires the string to begin with a valid digit sequence.

$ awk 'BEGIN{s="9gag.com"; x=s+1; print x}'
10

If the string contains no valid number at the start then it is converted to zero.

Awk will convert integer numbers (42), and floating point numbers (4.2), as well
as exponential numbers (1E3):

$ awk 'BEGIN{ printf "Y%g %g %g\n","42","4.2" "1E3" }'
42 4.2 1000

(Note: the ‘g’ format-control letter is for printing general numbers)

Increment and decrement operators

In the last episode we saw the use of these operators which increment or decrement
the value of a variable by one. There are similar operators in Bash, and these
were covered in HPR episode 1951.

The formal definition of these operators is:

+-+variable Increment variable, returning the new value as the value of the
expression.

variable++ Increment variable, returning the old value of variable as the value
of the expression.

--variable Decrement variable, returning the new value as the value of the
expression. (This expression is like ‘+-+variable’, but instead of adding, it
subtracts.)

http://hackerpublicradio.org/eps/hpr1951_full_shownotes.html#examples-of-arithmetic-evaluation

variable-- Decrement variable, returning the old value of variable as the value
of the expression. (This expression is like ‘variable4++’, but instead of
adding, it subtracts.)

We will look at some examples of the use of these operators a little later.

Arrays

As well as the simple (scalar) variables we have seen, Awk also provides one-
dimensional arrays'. These arrays are associative (also known as hashes).

An array has a name conforming to the rules for scalar variables mentioned
earlier. Not surprisingly you cannot name an array the same as a simple variable.

An array is a means of storing multiple values, and these values are referenced
by index values. Also, unlike most compiled languages, Awk’s arrays can be of
any length and can be added to at will. They can also be deleted from, but we’ll
deal with that later.

Given an array a, we might store a value in it thus:
a[1] = "HPR"

Here the array name is a, the index is 1 and the contents of a[1] is the string
“HPR”.

If you are familiar with arrays in other languages you might assume that the
index 1 is numeric. In fact, in Awk it is converted to a string because all array
indices are strings because Awk arrays are not contiguous but are associative.
Such arrays are indexed by arbitrary string values, making a sort of look-up
table.

Thus in an example in the last episode we saw:

NR !'=1 {
al[$2] ++
}

Here the Awk script was being used to produce a frequency count of colours in
our example file filel.txt. Field 2 in this file is the name of a colour, so the
meaning of a[$2]++ is:

Index the array a by the (string) contents of field 2. If the element
does not exist create it. Since Awk is very relaxed about initialisation,
this array element will be taken to be zero on creation, and will then
be incremented to 1. If the element already exists then its previous
value will be incremented.

L Actually, standard Awk provides a way of treating such arrays as multi-dimensional, and
GNU Awk (gawk) provides true arrays of arrays, but this is rather advanced and non-portable!

http://hackerpublicradio.org/eps/hpr2129/file1.txt

If you were able to look into the resulting array the end result would be:

Index Contents

brown
purple
red
yellow
green

NN NN

So, this shows that there is an array element: a["brown"]. Contained in this
array element is the number 2 because the colour ‘brown’ was encountered twice.

Note that we also know that the expression a[$2]++ achieves the same as the
assignment a[$2]+=1.

Looping through arrays

In the last episode the concept of looping through an array to print it out was
introduced. We saw:

for (b in a) {
print b, aflb]
}

As is so often the case with learning to write scripts it is often useful to visit
more advanced topics early on, even though the concepts behind them may not
yet have have been properly established.

We have not yet examined looping and other statements in Awk, but since we
want to be able to process entire arrays we need to look at this one now.

In brief, the ‘for’ statement provides a way to repeat a given set of statements
a number of times. We will look at this statement and the related ‘while’
statement later in the series.

This variant of the ‘for’ statement allows the processing of arrays. It consists of
the following components:

for (variable in array)
body

The expression ‘(variable in array)’ results in all of the index values in the
nominated array being provided, one at a time. While the loop runs the variable
is set to successive index values and the body is executed.

The body can consist of a single statement or a group of statements. If a group
is used, then curly braces must be used to enclose them.

The order in which array index values are provided is not defined — different
Awk version will use different orders. There are extensions within GNU Awk
(gawk) which can control this but we will leave this until much later.

10

11

12

So, dealing with our example from last episode, we can modify it as follows (with
spelling concessions due to the trans-Atlantic nature of this series):

BEGIN {

FS=","

OFS=","

print "color,count"
}
NR !'= 1 {

count [$2]+=1
}
END {

for (color in count)

print color, count[color]

}

This Awk script is available as color_count.awk. The array has been renamed
from ‘a’ to ‘count’ because it holds counts (frequencies) of the number of times
a colour is encountered. The array is indexed by the names of colours in field 2.
When we loop through the array in the END rule we use a variable ‘color’ to
store the latest index. Note that the unnecessary semicolons and curly braces
have been removed (to demonstrate that they can be!).

Running the script produces the following output:

$ awk -f color_count.awk filel.csv
color,count

brown, 2

purple, 2

red,?2

yellow,2

green,1

More built-in variables

In the last episode two more built-in (or predefined) variables were introduced.
The first was FS, which we have encountered before, though not in such a form.
The FS variable is set through the -F (or —field-separator) command-line option,
so ‘=F "," on the command line is the same as the statement FS = "," in an
Awk script. As we saw, the statement form needs to be in a BEGIN rule to be
set early enough in the script.

$ awk -F "," 'BEGIN{print "FS is",FS}'
FS is ,

Of course, F'S controls the chosen field separator as has been explained earlier
in the series.

http://hackerpublicradio.org/eps/hpr2163/color_count.awk

In the last episode we also saw the OFS variable. This does not have a command-
line equivalent. This variable, short for Output Field Separator, controls the
format of the output record produced by the print statement. Normally it is set
to a single space, so a print statement like the following separates its arguments
with a single space:

$ awk 'BEGIN{print "Hello","World"}'
Hello World

Note that omitting the comma results in the following:

$ awk 'BEGIN{print "Hello" "World"}'
HelloWorld

This is because Awk has concatenated the two strings before handing them to
the print statement.

The OFS variable can be a string if required:

$ awk 'BEGIN{OFS=" blurg "; print "Hello","World"}'
Hello blurg World

The contents of OFS only affects the behaviour of the print statement, not
printf:

$ awk 'BEGIN{OFS="\t"; printf "%s %s\n","Hello","World"}'
Hello World

Here the first argument to the printf statement, the format string, specifies
that two string arguments will be printed followed by a newline. The remaining
arguments are the two strings. The contents of OFS have no effect on the output.

Summary

This episode covered:

e A recap of the last episode

e Variables: simple or scalar variables

e Assignment of values to variables

o Arithmetic operators used in arithmetic expressions
o Assignment operators

e Conversion of strings to numbers and vice versa

e Increment and decrement operators

o Variables: Awk’s associative arrays (aka hashes)

e A brief peek at for loops used to scan arrays

e The built-in or predefined variables FiS and OFS

10

Links

e GNU Awk User’s Guide: https://www.gnu.org/software/gawk/manual/
html_node/index.html
e Previous shows on HPR:

— “Gnu Awk - Part 17: http://hackerpublicradio.org/eps.php?id=2114

— “Gnu Awk - Part 27: http://hackerpublicradio.org/eps.php?id=2129

— “Gnu Awk - Part 37: http://hackerpublicradio.org/eps.php?id=2143

o Arithmetic expansion in Bash “Some additional Bash Tips”: http://
hackerpublicradio.org/eps.php?id=1951
o Resources:

— Demonstration of arithmetic assignment operators: http:
//hackerpublicradio.org/eps/hpr2163/arithmetic__assignment__
operators.awk

— Counting frequencies of particular colours: http://hackerpublicradio.
org/eps/hpr2163/color_ count.awk

11

https://www.gnu.org/software/gawk/manual/html_node/index.html
https://www.gnu.org/software/gawk/manual/html_node/index.html
http://hackerpublicradio.org/eps.php?id=2114
http://hackerpublicradio.org/eps.php?id=2129
http://hackerpublicradio.org/eps.php?id=2143
http://hackerpublicradio.org/eps.php?id=1951
http://hackerpublicradio.org/eps.php?id=1951
http://hackerpublicradio.org/eps/hpr2163/arithmetic_assignment_operators.awk
http://hackerpublicradio.org/eps/hpr2163/arithmetic_assignment_operators.awk
http://hackerpublicradio.org/eps/hpr2163/arithmetic_assignment_operators.awk
http://hackerpublicradio.org/eps/hpr2163/color_count.awk
http://hackerpublicradio.org/eps/hpr2163/color_count.awk

	Introduction
	Recap of the last episode
	Logical Operators
	The next statement
	The BEGIN and END rules
	Variables, arrays, loops, etc

	Explaining variables
	Variable assignment
	Arithmetic operators
	Assignment operators
	Examples

	Type conversion
	Increment and decrement operators
	Arrays
	Looping through arrays

	More built-in variables
	Summary
	Links

