Gnu Awk - Part 6 (HPR Show 2238)

Dave Morriss

Contents

Introduction 1
Recap of the last episode 2
Regular expressions oo 2
Replacement o 2
More about regular expressions 3
More regular expression operators 3
Functions 4
The sub function 4
Examples using sub L oL 5

The gsub function Lo 5
Examples using gsubo)

The gensub function L. 6
First argument: regexp 6

Second argument: replacement 6

Third argument: how 7

Fourth argument: target 7

Examples using gensub Lo 7

Example script oo L 8
Warning for sed users Lo 10
Summary 10
Links o 10

Introduction

This is the sixth episode of the “Learning Awk” series that b-yeezi and I are
doing.

http://hackerpublicradio.org/series.php?id=94
http://hackerpublicradio.org/correspondents.php?hostid=300

Recap of the last episode
Regular expressions

In the last episode we saw regular expressions in the ‘pattern’ part of a ‘pattern
{action}’ sequence. Such a sequence is called a ‘RULE’, (as we have seen in
carlier episodes).

$1 ~ /plelul/ {print $03}

Meaning: If field 1 contains a ‘p’ followed by one of ‘€’, ‘I’ or ‘u’ print the
whole line.

$2 ~ /e{2}/ {print $0%}

Meaning: If field 2 contains two instances of letter ‘e’ in sequence, print the
whole line.

It is usual to enclose the regular expression in slashes, which make it a regexp
constant (see the GNU Manual for the details of these constants).

We had a look at many of the operators used in regular expressions in episode 5.
Unfortunately, some small errors crept into the list of operators mentioned in
that episode. These are incorrect:

o YA (beginning of a string)
e Az (end of a string)

e b (on a word boundary)
o d (any digit)

The first two operators exist, as does the last one, but only in languages like
Perl and Ruby, but not in GNU Awk.

For the ‘\b’ sequence the GNU manual says:

In other GNU software, the word-boundary operator is ‘\b’. However,
that conflicts with the awk language’s definition of ‘\b” as backspace,
so gawk uses a different letter. An alternative method would have
been to require two backslashes in the GNU operators, but this was
deemed too confusing. The current method of using ‘\y’ for the GNU
‘\b’ appears to be the lesser of two evils.

The corrected list of operators is discussed later in this episode.

Replacement

Last episode we saw the built-in functions that use regular expressions for
manipulating strings. These are sub, gsub and gensub. Regular expressions are
used in other functions but we will look at them later.

We will be looking at sub, gsub and gensub in more detail in this episode.

https://www.gnu.org/software/gawk/manual/gawk.html#Regexp

More about regular expressions
More regular expression operators

We have seen that the regular expressions in GNU Awk use certain characters
to denote concepts. For example, ¥ is not a full-stop (period) in a regular
expression, but means any character. This special meaning can be turned off by
preceding the character by a backslash ‘\’. Since a backslash is itself a special
character, if you need an actual backslash in a regular expression then precede it
with a backslash (‘\\’). We will demonstrate how the backslash might be used

in the examples later.

Note that (as with GNU sed) some regular expression operators consist of a
backslash followed by a character.

The following table summarises some of the regular expression operators, includ-
ing some we have already encountered.

Expression Meaning

any character A single ordinary character matches itself
Matches any character

Matches a sequence of zero or more instances of the preceding item
[list] Matches any single character in list: for example, [aeiou] matches all vowels
[list] A leading ‘"’ reverses the meaning of list, so that it matches any single character not in
” Matches the beginning of the line (anchors the search at the start)
$ Matches the end of the line (anchors the search at the end)
+ Similar to * but matches a sequence of one or more instances of the preceding item
? Similar to * but matches a sequence of zero or one instance of the preceding item
{i} Matches exactly i sequences (i is a decimal integer)
{i,j} Matches between i and j sequences, inclusive
{i,} Matches i or more sequences, inclusive
(regexp) Groups the inner regexzp. Allows it to be followed by a postfix operator, or can be used f

regexpl|regexp2 Matches regezpl or regexp2, | is used to separate alternatives

The expressions ‘[list] and ‘["list]” are known as bracket expressions in GNU
Awk. They represent a single character chosen from the list.

bAY

To include the characters ‘\’, ‘", ‘-’ or

"’ in the list precede them with a backslash.

The character classes like ‘[:alnum:]’ were dealt with in episode 5. These can
only be used in bracket expressions and represent a single character. They are
able to deal with extended character data (such as Unicode) whereas the older
list syntax cannot.

There are a number of GNU Awk (gawk) specific regular expression operators,
some of which we touched on in the recap.

\s matches any whitespace character. Equivalent to the ‘[:space:]’ character
class in a bracket expression (i.e. ‘[[:space:]]’).

\S matches any character that is not whitespace. Equivalent to ‘[*[:space:]]’.

\w matches any word character. A word character is any letter or digit or the
underscore character.

\'W matches any non-word character.

\< (backslash less than) matches the empty string at the beginning of a word.

\> (backslash greater than) matches the empty string at the end of a word.

\y (backslash y) matches a word boundary; that is it matches if the character
to the left is a word character and the character to the right is a non-word
character, or vice-versa.

\B Matches everywhere but on a word boundary; that is it matches if the
character to the left and the character to the right are either both word
characters or both non-word characters. This is essentially the opposite of
Ay’

*¢ (backslash backquote) matches the empty string at the beginning of a string.
This is essentially the same as the ‘*” (circumflez or caret) operator, which
means the beginning of the current line ($0), or the start of a string.

\’ (backslash single quote) matches the empty string at the end of a string. This
is essentially the same as the ‘8’ (dollar sign) operator, which means the
end of the current line ($0), or the end of a string.

GNU Awk can behave as if it is traditional Awk, or will operate only in POSIX
mode or can turn on and off other regular expression features. There is a
discussion of this in the GNU Awk manual, particularly in the Regular Expression
section.

Functions

The details of the built-in functions we will be looking at here can be found in
the GNU Manual in the String-Manipulation Functions section.

The sub function

The sub function has the format:
sub(regexp, replacement [, target])

The first argument regexp is a regular expression. This usually means it is
enclosed in ‘//’ delimiters?.

The second argument replacement is a string to be used to replace the text
matched by the regezp. If this contains a ‘&’ character this refers to the text
that was matched.

IThis is a “Regexp Constant”, but there is another form the “Computed Regexp”, which is
discussed in the GNU Manual.

https://www.gnu.org/software/gawk/manual/gawk.html#Regexp
https://www.gnu.org/software/gawk/manual/gawk.html#String-Functions
https://www.gnu.org/software/gawk/manual/gawk.html#Regexp

The optional third argument target is the name of the string or field that will be
changed by the function. It has to be an existing string variable or field since
sub changes it in place. If the target is omitted then field ‘80’ (the whole input
line) is modified.

The purpose of the sub function is to search the string in the target variable for
the longest leftmost match with the regexp argument. This is replaced by the
replacement argument.

The function returns the number of changes made (which can only be zero or 1).

Examples using sub

$ echo "banana" | awk '{sub(/an/,"XX"); print}'
bXXana

The first occurrence of the string ‘an’ is matched in the ‘$0’ field, and replaced
by ‘XX".

$ echo "banana" | awk '{sub(/an/,"&&"); print}'
bananana

This time the matched string is replaced by itself twice (‘anan’).

$ echo "banana" | awk '{n = sub(/an/,"&&"); print "Changes made=" n, "Result:", $0}'

Changes made=1 Result: bananana

Here the result of the sub function is stored in the variable n and it and the
result are printed.

The gsub function

The gsub function is similar to sub and has the format:
gsub(regexp, replacement [, target])
As with sub, the arguments have the same purpose.

The function differs in that it searches target for all matches, and replaces them.
The matches must not overlap (see below).

The function returns the number of changes made.

Examples using gsub

$ echo "banana" | awk '{gsub(/an/,"XX"); print}'
bXXXXa

All occurrences of the string ‘an’ are matched in the ‘$0’ field, and replaced by
‘XX

$ echo "banana" | awk '{gsub(/ana/,"XX"); print}'
bXXna

Here there are two overlapping instances of ‘ana’, but only the first is replaced.

$ awk '{n = gsub(/[aeioul/,"?",$1); printf "%-12s (%d)\n",$1,n}' filel.txt
n7m? (2)

7ppl? 2
b?n?n? (3)
strowb?rry (2)
gr7p? (2)
7ppl? (2)
pl7m D)
k?u? (2)
prt7t? (3)

p7n?7ppl? (4)

This time we used the example file filel.txt and replaced all vowels with
question marks, then captured the number changed. We printed the result and
the number of changes.

The gensub function

This function is different from the other two, and has been added to GNU Awk
later than sub and gsub?:

gensub(regexp, replacement, how [, target])

First argument: regexp

This is a regular expression (usually a regezp constant enclosed in slashes). Any
of the regular expression operators seen in this and the last episode can be
used. In particular, regular expressions enclosed in parentheses can be used here.
(Similar features were described in the “Learning sed” series).

Second argument: replacement

In this argument, which is a string, the text to use for replacement is defined.
This can also contain back references to text “captured” by the parenthesised
expressions mentioned above.

The back references consist of a backslash followed by a number. If the number
is zero then the it refers to the entire regular expression and is equivalent to the
‘&’ character. Otherwise the number may be 1 to 9, referring to a parenthesised

group.

2As a possible point of interest, I have a copy of the “GAWK Manual” (as it was called),
dated 1992, version 0.14, which does not contain gensub.

http://hackerpublicradio.org/series.php?id=90

Because of the way Awk processes strings, it is necessary to double the backslash
in this argument. For instance, to refer to parenthesised component number one
the string must be “\\1”.

Third argument: how
This is a string which should contain ‘G’, ‘g’ or a number.
If ‘G’ or ‘g’ (global) it means that all matches should be replaced as specified.

If it is a number then it indicates which particular numbered match and replace-
ment should be performed. It is not possible to perform multiple actions with
this feature.

Fourth argument: target

If this optional argument is omitted then the field ‘80’ is used. Otherwise the
argument can be a string, a variable (containing a string) or a field.

The target is not changed in situ, unlike with sub and gsub. The function
returns the changed string instead.

Examples using gensub

$ echo "banana" | awk '{print gensub(/a/,"A","g"); print}'
bAnAnA
banana

Here gensub matches every occurrence of ‘a’; replacing it with capital ‘A’ globally.
Note how we print the result of the gensub call. Note also that ‘30’ has not
changed as can be seen when we print it with the second print statement.

$ echo "banana" | awk '{print gensub(/a/,"A","1")}'
bAnana

In this example we have requested that only the first match be replaced. There
is no way to replace anything other than all matches or just one using the how
argument.

$ echo "banana" | awk '{print gensub(/\Ba\B/,"A","g")}'
bAnAna

This example shows another way to replace matching letters. In this case we
have specified only ’a’s which are not at a word boundary. This is not an ideal
solution.

$ echo "Hacker Public Radio" | awk '{print gensub(/(\w) (\w+) (\W*)/,"\\2\\1ay\\3","g")}'
ackerHay ublicPay adioRay

This example shows the use of regular expression groups and back references.
The three groups are:

1. A single “word” character
2. One or more “word” characters
3. Zero or more non-“word” characters

Having matched these items (e.g. ‘H’, ‘acker’ and space for the first word), they
are replaced by the second group (‘acker’), the first group (‘H’), the letters ‘ay’
and the third group (space). This is repeated throughout the target.

Since the target text consists of three words the regular expression matches three
times (since argument how was a ‘g’) and the words are all processed the same
way - into primitive “Pig Latin”.

$ awk 'BEGIN{print gensub(/(\w) (\w+) (\Wx)/,"\\2\\1ay\\3","3","Hacker Public Radio")}'
Hacker Public adioRay

This example is a variant of the previous one. In this case the entire Awk script
is in a ‘BEGIN’ rule, and the target is a string constant. Since argument how is
the number 3 then only the third match is replaced.

Example script

I have included a longer example using a new test datafile. The example Awk
script is called contacts.awk and the data file is contacts.txt. They are
included with this show and links to them are listed below.

The test data was generated on a site called “Mockaroo”, which was used to
generate CSV data. The Vim plugin csv.vim was used to reformat this into
the final format with the :ConvertData function. Here are the first 8 lines from
that file:

Name: Robin Richardson
First: Robin

Last: Richardson

Email: rrichardson0@163.com
Gender: Female

Name: Anne Price

First: Anne

Here is the entire awk script which can be run thus:
awk -f contacts.awk contacts.txt
#!1/usr/bin/awk -f

#
Define separators

https://www.mockaroo.com/
https://github.com/chrisbra/csv.vim

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

#
BEGIN{
#
The field separator is a newline
#
FS = ll\nll

#
The record separator is two newlines since there's a blank line between
contacts.

#
RS = n\n\nn
#
On output write a line of hyphens on a new line
#
ORS = "\n----\n"
X
{
#
Show where the "beginning of buffer" is
#
sub(/*/, "[")
#
Show where the "end of buffer" is
#
sub(/\'/, "1")
#
Show where the start and end of "line" are
#
sub(/~/, "{")
sub(/$/, "}")
#
Print the buffer with a record number and a field count
#
print u(u NR u/n NF u)u’ $O
X

The script changes the default separators in order to treat the entire block of
lines making up a contact as a single Awk “record”. Each field is separated from
the next with a newline, and each “record” is separated from the next by two
newlines. For variety when printing the output “records” are separated by a

newline, four hyphens and a newline.

As it processes each “record” the script marks the positions of four boundaries
using some of the regular expression operators we have seen in this episode. It
prints the “record” ($0) preceding it by the record number and the number of
fields.

A sample of the first 8 lines of the output looks like this:

(1/5) {[Name: Robin Richardson
First: Robin

Last: Richardson

Email: rrichardson0@163.com
Gender: Female]}

(2/5) {[Name: Anne Price
First: Anne

Warning for sed users

GNU awk is related to GNU sed, which was covered in the series “Learning sed”.
If you listened to that series there is unfortunately some potential for confusion
as we learn about GNU Awk. Many of the regular expression operators described
for GNU sed are the same as those used in GNU Awk except that sed uses a
backslash in front of some and Awk does not. Examples are ‘\+’ and ‘\?’ in sed
versus ‘+’ and ‘77 in Awk.

Summary

This episode covered:

e A recap of the last episode
— Correcting some small errors in the list of regular expression operators
e More detail of regular expression operators
o A detailed description of the functions sub, gsub and gensub with examples
¢ A more complex example Awk script
¢ A warning about the differences in regular expressions between sed and
Awk

Links

o GNU Awk User’s Guide

e Previous shows in this series on HPR:
— “Gnu Awk - Part 17 - episode 2114
— “Gnu Awk - Part 27 - episode 2129

10

http://hackerpublicradio.org/series.php?id=90
https://www.gnu.org/software/gawk/manual/html_node/index.html
http://hackerpublicradio.org/eps.php?id=2114
http://hackerpublicradio.org/eps.php?id=2129

— “Gnu Awk - Part 87 - episode 2143
— “Gnu Awk - Part 47 - episode 2163
— “Gnu Awk - Part 57 - episode 2184

The “Learning sed” series:

— “Introduction to sed - part 1”7 -

— “Introduction to sed - part 2”
— “Introduction to sed - part 3”
— “Introduction to sed - part 4”
— “Introduction to sed - part 5”

The “Mockaroo” data generator site

The Vim plugin “csv.vim”
Resources:
— ePub version of these notes
— PDF version of these notes

— Demonstration of some regex operators: contacts.awk

episode 1976
episode 1986
episode 1997
episode 2011
episode 2060

— File of dummy contacts: contacts.txt

11

http://hackerpublicradio.org/eps.php?id=2143
http://hackerpublicradio.org/eps.php?id=2163
http://hackerpublicradio.org/eps.php?id=2184
http://hackerpublicradio.org/eps.php?id=1976
http://hackerpublicradio.org/eps.php?id=1986
http://hackerpublicradio.org/eps.php?id=1997
http://hackerpublicradio.org/eps.php?id=2011
http://hackerpublicradio.org/eps.php?id=2060
https://www.mockaroo.com/
https://github.com/chrisbra/csv.vim
http://hackerpublicradio.org/eps/hpr2238_full_shownotes.epub
http://hackerpublicradio.org/eps/hpr2238_full_shownotes.pdf
http://hackerpublicradio.org/eps/hpr2238/contacts.awk
http://hackerpublicradio.org/eps/hpr2238/contacts.txt

	Introduction
	Recap of the last episode
	Regular expressions
	Replacement

	More about regular expressions
	More regular expression operators

	Functions
	The sub function
	Examples using sub

	The gsub function
	Examples using gsub

	The gensub function
	First argument: regexp
	Second argument: replacement
	Third argument: how
	Fourth argument: target
	Examples using gensub

	Example script
	Warning for sed users
	Summary
	Links

