
Gnu Awk - Part 8 (HPR Show 2438)

Dave Morriss

Contents
Introduction . 1
Recap of the last episode . 1
Some more statements . 2

The switch statement . 2
The break statement . 4
The continue statement . 5
The next statement . 6

Links . 7

Introduction

This is the eighth episode of the “Learning Awk” series that b-yeezi and I are
doing.

Recap of the last episode

• The while loop: tests a condition and performs commands while the test
returns true

• The do while loop: performs commands after the do, then tests afterwards,
repeating the commands while the test is true.

• The for loop (type 1): initialises a variable, performs a test, and increments
the variable all together, performing commands while the test is true.

• The for loop (type 2): sets a variable to successive indices of an array,
preforming a collection of commands for each index.

These types of loops were demonstrated by examples in the last episode.

Note that the example for ‘do while’ was an infinite loop (perhaps as a test of
the alertness of the audience!):

1

http://hackerpublicradio.org/series.php?id=94
http://hackerpublicradio.org/correspondents.php?hostid=300
http://hackerpublicradio.org/eps.php?id=2330

#!/usr/bin/awk -f
BEGIN {

i=2;
do {

print "The square of ", i, " is ", i*i;
i = i + 1

}
while (i != 2)

exit;
}

The condition in the while is always true:

The square of 2 is 4
The square of 3 is 9
The square of 4 is 16
The square of 5 is 25
The square of 6 is 36
The square of 7 is 49
The square of 8 is 64
The square of 9 is 81
The square of 10 is 100
...
The square of 1269630 is 1611960336900
The square of 1269631 is 1611962876161
The square of 1269632 is 1611965415424
The square of 1269633 is 1611967954689
The square of 1269634 is 1611970493956
...

The variable i is set to 2, the print is executed, then i is set to 3. The test “i
!= 2” is true and will be ad infinitum.

Some more statements

We will come back to loops later in this episode, but first this seems like a good
point to describe another statement: the switch statement.

The switch statement

This is specific to gawk, and can be disabled if non-GNU awk-compatibility is
required. The switch statement in gawk is very similar to the one in C and
many other languages.

2

The layout of the switch statement is as follows:

switch (expression) { case value: case-body default: default-body
}

The ‘expression’ part is an expression, which returns a numeric or string result.
The ‘value’ part after the case is a numeric or string constant or a regular
expression.

The expression is evaluated and the result matched against the case values in
turn. If there is a match the case-body statements are executed. If there is no
match the default-body statements are executed.

The following example is included as one of the files associated with this show,
called switch_example.awk:
#!/usr/bin/awk -f

#
Example of the use of 'switch' in GNU Awk.
#
Should be run against the data file 'file1.txt' included with the second
show in the series: http://hackerpublicradio.org/eps/hpr2129/file1.txt
#
NR > 1 {

printf "The %s is classified as: ",$1

switch ($1) {
case "apple":

print "a fruit, pome"
break

case "banana":
case "grape":
case "kiwi":

print "a fruit, berry"
break

case "strawberry":
print "not a true fruit, pseudocarp"
break

case "plum":
print "a fruit, drupe"
break

case "pineapple":
print "a fruit, fused berries (syncarp)"
break

case "potato":
print "a vegetable, tuber"
break

3

default:
print "[unclassified]"

}
}

The result of running this script against the “fruit” file presented in show 2129
is the following (switch_example.out):

The apple is classified as: a fruit, pome
The banana is classified as: a fruit, berry
The strawberry is classified as: not a true fruit, pseudocarp
The grape is classified as: a fruit, berry
The apple is classified as: a fruit, pome
The plum is classified as: a fruit, drupe
The kiwi is classified as: a fruit, berry
The potato is classified as: a vegetable, tuber
The pineapple is classified as: a fruit, fused berries (syncarp)

What this simple example does is:

• It ignores the first line of the file (a header)
• It prints the first field (the name of a fruit - mostly) in the string “The

%s is classified as:”. There is no newline so whatever is printed next is
appended to the line.

• It uses the first field in a switch statement. Each case is an exact match
with the contents of the field. If there is a match a print statement is
used to print out the Botanical classification. If there are no matches then
the default instance would print “[unclassified]”, but that doesn’t happen
in this example.

• All print statements are followed by break. If this hadn’t been there the
next case would be executed and so forth. This can be desirable in some
instances. See the next section for a discussion of break.

• Note that banana, grape and kiwi are all Botanically classified as a berry,
so there are three case parts associated with one print.

The break statement

This statement is mainly for “breaking out of” a for, while or do-while loop,
though, as we have seen it can interrupt the flow of execution in a switch
statement also. Outside of these statements break has no effect.

In a loop a break statement is often used where it’s not possible to determine
the number of iterations of the loop beforehand. Invoking break completely
terminates the enclosing loop (relevant when there are nested loops, or loops
within loops).

4

The following example (available for download as divisor.awk) is from the Gnu
Awk manual and shows a method of finding the smallest divisor:
#!/usr/bin/awk -f

find smallest divisor of num
{

num = $1

#
Make an infinite loop using the for loop
#
for (divisor = 2; ; divisor++) {

#
If the number is divisible by 'divisor' then we're done
#
if (num % divisor == 0) {

printf "Smallest divisor of %d is %d\n", num, divisor
break

}

#
If the value of 'divisor' has got too large the number has no
divisors and is therefore a prime number
#
if (divisor * divisor > num) {

printf "%d is prime\n", num
break

}
}

}

I have added some comments to this script to (hopefully) make it clearer.

Running this in a pipeline with the number presented to it as shown results in
the following type of output (divisor.out):

$ echo 67 | ./divisor.awk
67 is prime
$ echo 69 | ./divisor.awk
Smallest divisor of 69 is 3

The continue statement

This is similar to break in that it is used a for, while or do-while loop. It is
not relevant in switch statements however.

5

Invoking continue skips the rest of the enclosing loop and begins the next cycle.

The following example (available for download as continue_example.awk) is
from the Gnu Awk manual and demonstrates a possible use of continue:
#!/usr/bin/awk -f

#
Loop, printing numbers from 0-20, except for 5
(From the GNU Awk User's Guide)
#
BEGIN {

for (x = 0; x <= 20; x++) {
if (x == 5)

continue
printf "%d ", x

}
print ""

}

The next statement

This statement is not related to loops in the same way as break and continue
but to the main record processing cycle of Awk. The next statement causes Awk
to stop processing the current input record and go on to the next one.

As we know from earlier episodes in this series, Awk reads records from its input
stream and applies rules to them. The next statement stops the execution of
further rules for the current record, and moves on to the next one.

The following example (available for download as next_example.awk) is demon-
strates a use of next:
#!/usr/bin/awk -f

#
Ignore the header
#
NR == 1 { next }

#
If field 2 (colour) is less than 6 characters then save it with its line
number and skip it
#
length($2) < 6 {

skip[NR] = $0
next

6

}

#
It's not the header and the colour name is > 6 characters, so print the line
#
{

print
}

#
At the end show what was skipped
#
END {

printf "\nSkipped:\n"
for (n in skip)

print n": "skip[n]
}

• The script uses next in the first rule to avoid the first line of the file (a
header).

• The second rule skips lines where the colour name is less than 6 characters
long, but it also saves that line in an array called skip using the line
number as the key (index).

• The third rule prints anything it sees, but it will not be invoked if either
rule 1 or rule 2 cause it to be skipped.

• Finally, and END rule prints the contents of the array.

Running this with the file we have used many times before, file1.txt, results
in the following output (next_example.out):

$ next_example.awk file1.txt
banana yellow 6
grape purple 10
plum purple 2
pineapple yellow 5

Skipped:
2: apple red 4
4: strawberry red 3
6: apple green 8
8: kiwi brown 4
9: potato brown 9

Links

• GNU Awk User’s Guide

7

https://www.gnu.org/software/gawk/manual/html_node/index.html

• Previous shows in this series on HPR:
– “Gnu Awk - Part 1” - episode 2114
– “Gnu Awk - Part 2” - episode 2129
– “Gnu Awk - Part 3” - episode 2143
– “Gnu Awk - Part 4” - episode 2163
– “Gnu Awk - Part 5” - episode 2184
– “Gnu Awk - Part 6” - episode 2238
– “Gnu Awk - Part 7” - episode 2330

• Resources:
– ePub version of these notes
– PDF version of these notes
– Demonstration of the switch statement:

∗ Script: switch_example.awk
∗ Output: switch_example.out

– Demonstration of the break statement:
∗ Script: divisor.awk
∗ Output: divisor.out

– Demonstration of the continue statement:
∗ Script: continue_example.awk

– Demonstration of the next statement:
∗ Script: next_example.awk
∗ Output: next_example.out

8

http://hackerpublicradio.org/eps.php?id=2114
http://hackerpublicradio.org/eps.php?id=2129
http://hackerpublicradio.org/eps.php?id=2143
http://hackerpublicradio.org/eps.php?id=2163
http://hackerpublicradio.org/eps.php?id=2184
http://hackerpublicradio.org/eps.php?id=2238
http://hackerpublicradio.org/eps.php?id=2330
http://hackerpublicradio.org/eps/hpr2438/full_shownotes.epub
http://hackerpublicradio.org/eps/hpr2438/full_shownotes.pdf
http://hackerpublicradio.org/eps/hpr2438/switch_example.awk
http://hackerpublicradio.org/eps/hpr2438/switch_example.out
http://hackerpublicradio.org/eps/hpr2438/divisor.awk
http://hackerpublicradio.org/eps/hpr2438/divisor.out
http://hackerpublicradio.org/eps/hpr2438/continue_example.awk
http://hackerpublicradio.org/eps/hpr2438/next_example.awk
http://hackerpublicradio.org/eps/hpr2438/next_example.out

	Introduction
	Recap of the last episode
	Some more statements
	The switch statement
	The break statement
	The continue statement
	The next statement

	Links

