
Gnu Awk - Part 10 (HPR Show 2526)

Dave Morriss

Contents
Introduction . 1
A bit more about arrays . 1

A recap . 1
Using numbers as array subscripts 2
What if the subscript is uninitialised? 3
Deleting array elements . 4
Splitting strings into arrays . 5

split . 5
Real-world Examples . 6

Scanning a log file . 6
Parsing a tab-delimited file . 8

Links . 10

Introduction

This is the tenth episode of the “Learning Awk” series which is being produced
by b-yeezi and myself.

In this episode I want to talk more about the use of arrays in GNU Awk and
then I want to examine some real-world examples of the use of awk.

A bit more about arrays

A recap

We know from earlier in the series that arrays in awk are associative. That is,
the index used to refer to an element is a string. The contents of each array
element may be a number or a string (or nothing). An associative array is also
called a hash. An array index is also referred to as a subscript.

We also know that array elements are referred to with expressions such as:

1

http://hackerpublicradio.org/series.php?id=94
http://hackerpublicradio.org/correspondents.php?hostid=300

array[index]

so, fruit["apple"] means the element of the array fruit which is indexed
by the string "apple". The index value is actually an expression, so it can be
arbitrarily complex, such as:

ind1 = "app"
ind2 = "le"
print fruit[ind1 ind2]

Here the two strings "app" and "le" are concatenated to make the index
"apple".

We saw earlier in the series that the presence of an array element is checked with
an expression using:

index in array

So an example might be:

if ("apple" in fruit)
print fruit["apple"]

Looping through the elements of an array is achieved with the specialised for
statement as we saw in an earlier episode:

for (ind in fruit)
print fruit[ind]

Using numbers as array subscripts

In awk array subscripts are always strings. If a number is used then this is
converted into a string. This is not a problem with statements like the following:

data[42] = 8388607

The integer number 42 is converted into the string "42" and everything works
as normal.

However, awk can handle other number bases. For example, in common with
many other programming languages, a leading zero denotes an octal number,
making data[052] the same as data[42] (because decimal 42 is octal 52).

Also data[0x2A] is the same as data[42] because hexadecimal 2A is decimal
42.

The way in which numbers are converted into strings in awk is important to
understand. A built-in variable called CONVFMT defines the conversion for floating
point numbers. Behind the scenes the function sprintf is used. (This is like
printf which we saw in episode 9, but it returns a formatted string rather than
printing anything.)

2

The default value for CONVFMT is "%.6g" which means (according to the manual)
to print a number in either scientific notation or in floating-point notation,
whichever uses fewer characters. The number 6 aims to format the number in a
width of 6 characters (plus the decimal point). The setting of CONVFMT can be
adjusted in the script if desired.

Knowing this the index can be determined in cases like this:

$ awk 'BEGIN{ x=100/3; data[x]="custard"; print x, data[x] }'
33.3333 custard

However, things get a little weird in this case:

$ awk 'BEGIN{ x=1000000000/3; data[x]="prunes"; print x, data[x] }'
3.33333e+08 prunes

The thing to be careful of is adjusting CONVFMT between storing and retrieving
an array element!

What if the subscript is uninitialised?

The GNU Awk User’s Guide mentions this. An uninitialised variable treated as
a number is zero, but treated as a string is a null string "". The following script
is in the file awk10_ex1.awk which may be downloaded:

#!/usr/bin/awk -f
{

a[l] = $0
l++
print NR" "$0

}
END{

print "Numeric subscripts:"
for (i = l - 1; i >= 0; i--)

print i": "a[i]

print "Actual subscripts:"
for (i in a)

print i": "a[i]
}

This can lead to unexpected results:

$ echo -e "A\nB\nC" | ./awk10_ex1.awk
1 A
2 B
3 C
Numeric subscripts:
2: C

3

https://www.gnu.org/software/gawk/manual/html_node/index.html
http://hackerpublicradio.org/eps/hpr2526/awk10_ex2.awk

1: B
0:
Actual subscripts:
: A
0:
1: B
2: C

The variable l is used as the index to the array a. It is uninitialised the first
time it is used so the string it provides is an empty string, which is a valid array
index. Then it is incremented and it then takes numeric values. The main rule
prints each line as it receives it just to prove it’s actually seeing all three lines.

In the END rule the array is printed (in reverse order) using numeric indexes 2, 1
and zero. There is nothing in element zero.

Then the array is printed again using the “index in array” method. Notice how
the letter A is there with an empty index. Notice also that there is an element
with index zero too. That was created in the previous loop since accessing a
non-existent array element creates it!

Had the two lines in the main rule been replaced as shown the outcome would
have been more predictable:

a[l] = $0
l++

Replacement:

a[l++] = $0

Remembering that l++ returns the value of l then increments it, this forces the
first value returned to be zero because it is a numeric expression.

Deleting array elements

There is a delete statement which can delete a given array element. For example,
in the above demonstration of subscript issues, the spurious element could have
been deleted with:

delete a[0]

The generic format is:

delete array[index]

We already saw that array elements with empty subscripts or empty values can
exist in an array, so we know that making an element empty does not delete it.

An entire array can be deleted with the generic statement:

delete array

4

The array remains declared but is empty, so re-using its name as an ordinary
(scalar) variable after using delete on it will result in an error.

Splitting strings into arrays

There are two functions in awk which generate arrays from strings by splitting
them up by some criterion. The functions are: split and patsplit. We will
look at split in this episode and patsplit in a subsequent one.

split

The general format of the split function is:

split(string, array [, fieldsep [, seps]])

The first two arguments are mandatory but the second two are optional.

The function divides string into pieces separated by fieldsep and stores the pieces
in array and the separator strings in the seps array (a GNU Awk extension).

Successive pieces are placed in array[1], array[2], and so on. The array is
emptied before the splitting begins.

If fieldsep is omitted then the value of the built-in variable FS is used, so split
can be seen as a method of generating fields from a string in a similar way to
the main field processing that awk performs. If fieldsep is provided than it is a
regular expression (again in the same way as FS).

The seps array is used to hold each of the separators. If fieldsep is a single space
then any leading white space goes into seps[0] and any trailing white space
goes into seps[n], where n is the number of number of elements in array.

The function split returns the number of pieces placed in array.

Example of using split

The following script is in the file awk10_ex2.awk which may be downloaded:

#!/usr/bin/awk -f
{

lines[NR] = $0
}

END{
for (i in lines) {

split(lines[i],flds,/ *, */,seps)
for (j in flds)

printf "|%s| (%s)\n",flds[j],seps[j]
}

5

http://hackerpublicradio.org/eps/hpr2526/awk10_ex2.awk

}

It reads lines into an array called lines using the record number as the index.
In the END rule it processes this array, splitting each line into another array
called flds and the separators into an array called seps.

The fieldsep value is a regular expression consisting of a comma surrounded by
any number of spaces. The flds array is printed in delimiters to demonstrate
that any leading and trailing spaces have been removed. The seps array is
appended to each output line enclosed in parentheses so you can see what was
captured there.

Here is what happens when the script is run:

$ echo -e "A,B,C\nD, E ,F" | ./awk10_ex2.awk
|A| (,)
|B| (,)
|C| ()
|D| (,)
|E| (,)
|F| ()

Real-world Examples

The following example scripts are not specifically about the use of arrays in
awk. This is more of an attempt to demonstrate some real-world awk scripts for
reference.

Scanning a log file

I have a script I wrote to add tags and summaries to HPR episodes that have
none. I seem to mention this project every month on the Community News
show! The script receives email messages with updates, and keeps a log with
lines that look like this as it processes them:

2018/02/19 04:17:21 [INFO] Moving /home/dave/MailSpool/episode-736.eml to 'processed'
2018/02/19 04:17:21 [INFO] 736:tags:summary

Note: if you are wondering about the times they are local to the server, based in
California USA, on which the script is run. I run things from the UK timezone
(UTC or UTC+1).

I like to add a report on the number of tags and summaries processed each
month to the Community News show notes, so I wanted to scan this log file for
the month’s total.

Originally I used a pipeline with grep and wc but the task is well suited to awk.
This was my solution (with added line numbers for reference):

6

1: awk '
2: BEGIN{
3: re = "^" strftime("%Y/%m/") ".. .* [0-9]{1,4}:"
4: count = 0
5: }
6: $0 ~ re {
7: printf "%02d %s\n",++count,$0
8: }
9: END{

10: print "Additions",count
11: }
12: ' process_mail_tags.log

• In the BEGIN (lines 2-5) rule a regular expression is defined in the variable
re.

– This starts with a ‘ˆ’ character which anchors the expression to the
start of the line.

– This is followed by part of the date generated with the built-in function
strftime. Here we generate the current year and the current month
number and a slash.

– Two dots follow which cater for the day number, then there is a space
and ‘.*’ meaning zero or more characters.

– This is followed by a space then between one and four digits. This
matches the show number after the ‘[INFO]’ part.

– The expression ends with a colon which matches the one after the
show number

• In the rule a variable count is initialised to zero (not strictly necessary
but good programming practice)

• The main rule for processing the input file (lines 6-8) matches each line
against the regular expression. If it matches the line is printed preceded by
the current value of count (which is pre-incremented before being printed).

• The END rule (lines 9-11) prints the final value of count.

Running this towards the end of February 2018 we get:

01: 2018/02/05 01:19:09 [INFO] 788:summary:tags
02: 2018/02/05 05:17:27 [INFO] 1683:tags
03: 2018/02/05 06:15:16 [INFO] 1663:tags
04: 2018/02/05 06:15:16 [INFO] 1666:tags
05: 2018/02/05 06:15:16 [INFO] 1668:tags
06: 2018/02/05 06:15:16 [INFO] 1669:tags
07: 2018/02/05 06:22:43 [INFO] 1693:tags
08: 2018/02/05 06:52:13 [INFO] 1550:tags
09: 2018/02/05 06:52:13 [INFO] 1551:tags
10: 2018/02/05 06:52:13 [INFO] 1552:tags

7

11: 2018/02/05 06:52:13 [INFO] 1554:tags
12: 2018/02/05 06:52:13 [INFO] 1556:tags
13: 2018/02/05 06:52:13 [INFO] 1559:tags
14: 2018/02/05 14:33:46 [INFO] 1540:tags
15: 2018/02/05 14:33:46 [INFO] 1541:tags
16: 2018/02/05 14:33:46 [INFO] 1543:tags
17: 2018/02/05 14:33:46 [INFO] 1547:tags
18: 2018/02/05 14:33:46 [INFO] 1549:tags
19: 2018/02/17 11:44:56 [INFO] 798:tags:summary
20: 2018/02/18 02:55:53 [INFO] 0021:summary:tags
21: 2018/02/19 04:17:21 [INFO] 736:tags:summary
22: 2018/02/25 03:32:45 [INFO] 1480:tags
23: 2018/02/25 03:32:45 [INFO] 1489:summary:tags
Additions 23

Of course, I would not run this awk script on the command line as shown here.
I’d place it in a Bash script to simplify the typing, but I will not demonstrate
that here.

Parsing a tab-delimited file

I am currently looking after the process of uploading HPR episodes to the
Internet Archive (IA) - archive.org. To manage this I use a Python library
called internetarchive and a command line tool called ia. The ia tool lets me
interrogate the archive, returning data about shows that have been uploaded as
well as allowing me to upload and change them.

In some cases I find it necessary to replace the audio formats which have been
generated automatically by archive.org with copies generated by the HPR
software. This is because we want to ensure these audio files contain metadata
(audio tags). The shows generated by archive.org are converted from the WAV
file we upload in a process referred to as derivation, and contain no metadata.

I needed to be able to tell which HPR episodes had derived audio and which
had original audio. The ia tool could do this but in a format which was difficult
to parse, so I wrote an awk script to do it for me.

The data I needed to parse consists of tab-delimited lines. The first line contains
the names of all of the columns. However, some the columns were not always
present or were in different orders, so this required a little more work to parse.

Here is a sample of the input file format:

$ ia list -va hpr2450 | head -3
name sha1 format btih height source length width mtime crc32 size bitrate original md5
hpr2450.afpk b71f63ef1e8c359b3f0f7a546835919a8a7889da Columbia Peaks derivative 1513450216 656e162d 107184 hpr2450.wav 0ace3e0ae96510a85bee6dda3b69ab78
hpr2450.flac cd917c46eaf22f0ec0253bd018b475380e83ce7e Flac 0 derivative 738.08 0 1515280267 e7934979 27556168 hpr2450.wav 7a9b716932b33a2e6713ae3f4e23d24d

8

The following script, called parse_ia_audio.awk, was what I produced to parse
this data.

#!/usr/bin/awk -f

#---
Process tab-delimited data from the Internet Archive with a field name
header, reporting particular fields. The algorithm is general though this
instance is specific.
#
In this case we extract only the audio files
#
This script is meant to be used thus:
$ ia list -va hpr2450 | ./parse_ia_audio.awk
hpr2450.flac derivative
hpr2450.mp3 derivative
hpr2450.ogg derivative
hpr2450.opus original
hpr2450.spx original
hpr2450.wav original
#
#---

BEGIN {
FS = "\t"

}

#
Read the header line and collect the fields into an array such that a search
by field name returns the field number.
#
NR == 1 {

for (i = 1; i <= NF; i++) {
fld[$i] = i

}
}

#
Read the rest of the data, reporting only the lines relating to audio files
and print the fields 'name' and 'source'
#
NR > 1 && $(fld["name"]) ~ /[^.]\.(flac|mp3|ogg|opus|spx|wav)/ {

printf "%-15s %s\n",$(fld["name"]),$(fld["source"])
}

The BEGIN rule defines the field delimiter as the TAB character.

9

The first rule runs only when the first record is encountered. This is the header
with the names of the columns (fields). A for loop scans the fields which have
been split up by awk’s usual record splitting. The fields are named $1, $2 etc.
The variable i increments from 1 to however many fields there are in the record
and stores the field numbers in the array fld indexed by the contents of the
field.

The end result will be:

fld["name"] = 1
fld["sha1"] = 2
fld["format"] = 3
etc

The second rule is invoked if two conditions are met:

• The record number is greater than 1
• The field numbered whatever the header "name" returned (1 in the example)

ends with one of flac, mp3, ogg, opus, spx, wav

This rule prints the fields indexed by the column names "name" and "source".
The first comment in the script shows what this will look like.

Note the use of expressions like:

$(fld["name"])

Here awk will find the value stored in fld["name"] (1 in the example data) and
will reference the field called $(1), which is another way of writing $1. The
parentheses are necessary to remove ambiguity.

So, the script is just printing columns for certain selected lines, but is able to
cope with the columns being in different positions at different times because it
prints them “by name”.

Most of the queries handled by the Internet Archive API return JSON-format
results (not something that awk can easily parse), but for some reason this one
returns a varying tab-delimited file. Still, awk was able to come to the rescue!

Links

• GNU Awk User’s Guide
• Previous shows in this series on HPR:

– “Gnu Awk - Part 1” - episode 2114
– “Gnu Awk - Part 2” - episode 2129
– “Gnu Awk - Part 3” - episode 2143
– “Gnu Awk - Part 4” - episode 2163
– “Gnu Awk - Part 5” - episode 2184
– “Gnu Awk - Part 6” - episode 2238
– “Gnu Awk - Part 7” - episode 2330

10

https://www.gnu.org/software/gawk/manual/html_node/index.html
http://hackerpublicradio.org/eps.php?id=2114
http://hackerpublicradio.org/eps.php?id=2129
http://hackerpublicradio.org/eps.php?id=2143
http://hackerpublicradio.org/eps.php?id=2163
http://hackerpublicradio.org/eps.php?id=2184
http://hackerpublicradio.org/eps.php?id=2238
http://hackerpublicradio.org/eps.php?id=2330

– “Gnu Awk - Part 8” - episode 2438
– “Gnu Awk - Part 9” - episode 2476

• Resources:
– ePub version of these notes
– PDF version of these notes
– awk10_ex1.awk
– awk10_ex2.awk

11

http://hackerpublicradio.org/eps.php?id=2438
http://hackerpublicradio.org/eps.php?id=2476
http://hackerpublicradio.org/eps/hpr2526/full_shownotes.epub
http://hackerpublicradio.org/eps/hpr2526/full_shownotes.pdf
http://hackerpublicradio.org/eps/hpr2526/awk10_ex1.awk
http://hackerpublicradio.org/eps/hpr2526/awk10_ex2.awk

	Introduction
	A bit more about arrays
	A recap
	Using numbers as array subscripts
	What if the subscript is uninitialised?
	Deleting array elements
	Splitting strings into arrays
	split

	Real-world Examples
	Scanning a log file
	Parsing a tab-delimited file

	Links

