OpenWebUI-Discordbot/open-webui-tool/bedrock-image-tool.py

101 lines
3.1 KiB
Python
Raw Permalink Normal View History

2025-01-03 03:38:42 +00:00
"""
title: Bedrock Image Description
author: Josh Knapp
version: 0.1.0
description="Provide Direct Bedrock call for image generation"
"""
import subprocess
import json
from pydantic import BaseModel, Field
# Try to import boto3, install if not present
try:
import boto3
except ImportError:
print("boto3 package not found. Attempting to install...")
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "boto3"])
import boto3
print("boto3 package installed successfully")
except subprocess.CalledProcessError as e:
print(f"Failed to install boto3 package: {str(e)}")
class Tools:
class Valves(BaseModel):
AWS_ACCESS_KEY: str = Field(
default="",
description="AWS Access Key",
)
AWS_SECRET_KEY: str = Field(
default="",
description="AWS Secret Key",
)
AWS_BEDROCK_MODEL: str = Field(
default="",
description="AWS Bedrock Model to use"
)
def __init__(self):
self.valves = self.Valves()
pass
def analyze_image(self, base64_image: str) -> str:
"""
Analyze an image using AWS Bedrock's vision model
Args:
base64_image (str): Base64 encoded image string
Returns:
str: Description of the image
"""
try:
# Initialize Bedrock runtime client
bedrock = boto3.client(
service_name="bedrock-runtime",
aws_access_key_id=self.valves.AWS_ACCESS_KEY,
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
region_name="us-east-1" # or your preferred region
)
# Prepare the request body
request_body = {
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": 1000,
"messages": [
{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": base64_image
}
},
{
"type": "text",
"text": "Please describe this image in detail."
}
]
}
]
}
# Invoke the model
response = bedrock.invoke_model(
modelId=self.valves.AWS_BEDROCK_MODEL,
body=json.dumps(request_body)
)
# Parse and return the response
response_body = json.loads(response['body'].read())
return response_body['messages'][0]['content'][0]['text']
except Exception as e:
print(f"Error analyzing image: {str(e)}")
return f"Error analyzing image: {str(e)}"