Add MCP tools integration for Discord bot
All checks were successful
OpenWebUI Discord Bot / Build-and-Push (push) Successful in 1m2s
All checks were successful
OpenWebUI Discord Bot / Build-and-Push (push) Successful in 1m2s
Major improvements to LiteLLM Discord bot with MCP (Model Context Protocol) tools support: Features added: - MCP tools discovery and integration with LiteLLM proxy - Fetch and convert 40+ GitHub MCP tools to OpenAI format - Tool calling flow with placeholder execution (pending MCP endpoint confirmation) - Dynamic tool injection based on LiteLLM MCP server configuration - Enhanced system prompt with tool usage guidance - Added ENABLE_TOOLS environment variable for easy toggle - Comprehensive debug logging for troubleshooting Technical changes: - Added httpx>=0.25.0 dependency for async MCP API calls - Implemented get_available_mcp_tools() to query /v1/mcp/server and /v1/mcp/tools endpoints - Convert MCP tool schemas to OpenAI function calling format - Detect and handle tool_calls in model responses - Added system_prompt.txt for customizable bot behavior - Updated README with better documentation and setup instructions - Created claude.md with detailed development notes and upgrade roadmap Configuration: - New ENABLE_TOOLS flag in .env to control MCP integration - DEBUG_LOGGING for detailed execution logs - System prompt file support for easy customization Known limitations: - Tool execution currently uses placeholders (MCP execution endpoint needs verification) - Limited to 50 tools to avoid overwhelming the model - Requires LiteLLM proxy with MCP server configured Next steps: - Verify correct LiteLLM MCP tool execution endpoint - Implement actual tool execution via MCP proxy - Test end-to-end GitHub operations through Discord 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
12
Dockerfile
12
Dockerfile
@@ -1,5 +1,5 @@
|
||||
# Use Python 3 base image
|
||||
FROM python:3.9-slim
|
||||
FROM python:3.11-slim
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
@@ -10,11 +10,15 @@ RUN apt-get update && apt-get install -y \
|
||||
libopus0 \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install required packages
|
||||
RUN pip install --no-cache-dir discord.py python-dotenv openai requests asyncio
|
||||
# Copy requirements file
|
||||
COPY /scripts/requirements.txt .
|
||||
|
||||
# Copy the bot script
|
||||
# Install required packages from requirements.txt
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Copy the bot script and system prompt
|
||||
COPY /scripts/discordbot.py .
|
||||
COPY /scripts/system_prompt.txt .
|
||||
|
||||
# Run the bot on container start
|
||||
CMD ["python", "discordbot.py"]
|
||||
221
README.md
221
README.md
@@ -1,23 +1,214 @@
|
||||
# OpenWebUI-Discordbot
|
||||
# LiteLLM Discord Bot
|
||||
|
||||
A Discord bot that interfaces with an OpenWebUI instance to provide AI-powered responses in your Discord server.
|
||||
A Discord bot that interfaces with LiteLLM proxy to provide AI-powered responses in your Discord server. Supports multiple LLM providers through LiteLLM, conversation history management, image analysis, and configurable system prompts.
|
||||
|
||||
## Features
|
||||
|
||||
- 🤖 **LiteLLM Integration**: Use any LLM provider supported by LiteLLM (OpenAI, Anthropic, Google, local models, etc.)
|
||||
- 💬 **Conversation History**: Intelligent message history with token-aware truncation
|
||||
- 🖼️ **Image Support**: Analyze images attached to messages (for vision-capable models)
|
||||
- ⚙️ **Configurable System Prompts**: Customize bot behavior via file-based prompts
|
||||
- 🔄 **Async Architecture**: Efficient async/await design for responsive interactions
|
||||
- 🐳 **Docker Support**: Easy deployment with Docker
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Docker (for containerized deployment)
|
||||
- Python 3.8 or higher+ (for local development)
|
||||
- A Discord Bot Token ([How to create a Discord Bot Token](https://www.writebots.com/discord-bot-token/))
|
||||
- Access to an OpenWebUI instance
|
||||
- **Python 3.11+** (for local development) or **Docker** (for containerized deployment)
|
||||
- **Discord Bot Token** ([How to create one](https://www.writebots.com/discord-bot-token/))
|
||||
- **LiteLLM Proxy** instance running ([LiteLLM setup guide](https://docs.litellm.ai/docs/proxy/quick_start))
|
||||
|
||||
## Installation
|
||||
## Quick Start
|
||||
|
||||
##### Running locally
|
||||
### Option 1: Running with Docker (Recommended)
|
||||
|
||||
1. Clone the repository
|
||||
2. Copy `.env.sample` to `.env` and configure your environment variables:
|
||||
```env
|
||||
DISCORD_TOKEN=your_discord_bot_token
|
||||
OPENAI_API_KEY=your_openwebui_api_key
|
||||
OPENWEBUI_API_BASE=http://your_openwebui_instance:port/api
|
||||
MODEL_NAME=your_model_name
|
||||
1. Clone the repository:
|
||||
```bash
|
||||
git clone <repository-url>
|
||||
cd OpenWebUI-Discordbot
|
||||
```
|
||||
|
||||
2. Configure environment variables:
|
||||
```bash
|
||||
cd scripts
|
||||
cp .env.sample .env
|
||||
# Edit .env with your actual values
|
||||
```
|
||||
|
||||
3. Build and run with Docker:
|
||||
```bash
|
||||
docker build -t discord-bot .
|
||||
docker run --env-file scripts/.env discord-bot
|
||||
```
|
||||
|
||||
### Option 2: Running Locally
|
||||
|
||||
1. Clone the repository and navigate to scripts directory:
|
||||
```bash
|
||||
git clone <repository-url>
|
||||
cd OpenWebUI-Discordbot/scripts
|
||||
```
|
||||
|
||||
2. Install dependencies:
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Copy and configure environment variables:
|
||||
```bash
|
||||
cp .env.sample .env
|
||||
# Edit .env with your configuration
|
||||
```
|
||||
|
||||
4. Run the bot:
|
||||
```bash
|
||||
python discordbot.py
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
Create a `.env` file in the `scripts/` directory with the following variables:
|
||||
|
||||
```env
|
||||
# Discord Bot Token - Get from https://discord.com/developers/applications
|
||||
DISCORD_TOKEN=your_discord_bot_token
|
||||
|
||||
# LiteLLM API Configuration
|
||||
LITELLM_API_KEY=sk-1234
|
||||
LITELLM_API_BASE=http://localhost:4000
|
||||
|
||||
# Model name (any model supported by your LiteLLM proxy)
|
||||
MODEL_NAME=gpt-4-turbo-preview
|
||||
|
||||
# System Prompt Configuration (optional)
|
||||
SYSTEM_PROMPT_FILE=./system_prompt.txt
|
||||
|
||||
# Maximum tokens to use for conversation history (optional, default: 3000)
|
||||
MAX_HISTORY_TOKENS=3000
|
||||
```
|
||||
|
||||
### System Prompt Customization
|
||||
|
||||
The bot's behavior is controlled by a system prompt file. Edit `scripts/system_prompt.txt` to customize how the bot responds:
|
||||
|
||||
```txt
|
||||
You are a helpful AI assistant integrated into Discord. Users will interact with you by mentioning you or sending direct messages.
|
||||
|
||||
Key behaviors:
|
||||
- Be concise and friendly in your responses
|
||||
- Use Discord markdown formatting when helpful (code blocks, bold, italics, etc.)
|
||||
- When users attach images, analyze them and provide relevant insights
|
||||
...
|
||||
```
|
||||
|
||||
## Setting Up LiteLLM Proxy
|
||||
|
||||
### Quick Setup (Local)
|
||||
|
||||
1. Install LiteLLM:
|
||||
```bash
|
||||
pip install litellm
|
||||
```
|
||||
|
||||
2. Run the proxy:
|
||||
```bash
|
||||
litellm --model gpt-4-turbo-preview --api_key YOUR_OPENAI_KEY
|
||||
# Or for local models:
|
||||
litellm --model ollama/llama3.2-vision
|
||||
```
|
||||
|
||||
### Production Setup (Docker)
|
||||
|
||||
```bash
|
||||
docker run -p 4000:4000 \
|
||||
-e OPENAI_API_KEY=your_key \
|
||||
ghcr.io/berriai/litellm:main-latest
|
||||
```
|
||||
|
||||
For advanced configuration, create a `litellm_config.yaml`:
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-4-turbo
|
||||
litellm_params:
|
||||
model: gpt-4-turbo-preview
|
||||
api_key: os.environ/OPENAI_API_KEY
|
||||
- model_name: claude
|
||||
litellm_params:
|
||||
model: claude-3-sonnet-20240229
|
||||
api_key: os.environ/ANTHROPIC_API_KEY
|
||||
```
|
||||
|
||||
Then run:
|
||||
```bash
|
||||
litellm --config litellm_config.yaml
|
||||
```
|
||||
|
||||
See [LiteLLM documentation](https://docs.litellm.ai/) for more details.
|
||||
|
||||
## Usage
|
||||
|
||||
### Triggering the Bot
|
||||
|
||||
The bot responds to:
|
||||
- **@mentions** in any channel where it has read access
|
||||
- **Direct messages (DMs)**
|
||||
|
||||
Example:
|
||||
```
|
||||
User: @BotName what's the weather like?
|
||||
Bot: I don't have access to real-time weather data, but I can help you with other questions!
|
||||
```
|
||||
|
||||
### Image Analysis
|
||||
|
||||
Attach images to your message (requires vision-capable model):
|
||||
```
|
||||
User: @BotName what's in this image? [image.png]
|
||||
Bot: The image shows a beautiful sunset over the ocean with...
|
||||
```
|
||||
|
||||
### Message History
|
||||
|
||||
The bot automatically maintains conversation context:
|
||||
- Retrieves recent relevant messages from the channel
|
||||
- Limits history based on token count (configurable via `MAX_HISTORY_TOKENS`)
|
||||
- Only includes messages where the bot was mentioned or bot's own responses
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
### Key Improvements from OpenWebUI Version
|
||||
|
||||
1. **LiteLLM Integration**: Switched from OpenWebUI to LiteLLM for broader model support
|
||||
2. **Proper Conversation Format**: Messages use correct role attribution (system/user/assistant)
|
||||
3. **Token-Aware History**: Intelligent truncation to stay within model context limits
|
||||
4. **Async Image Downloads**: Uses `aiohttp` instead of synchronous `requests`
|
||||
5. **File-Based System Prompts**: Easy customization without code changes
|
||||
6. **Better Error Handling**: Improved error messages and validation
|
||||
|
||||
### Project Structure
|
||||
|
||||
```
|
||||
OpenWebUI-Discordbot/
|
||||
├── scripts/
|
||||
│ ├── discordbot.py # Main bot code (production)
|
||||
│ ├── system_prompt.txt # System prompt configuration
|
||||
│ ├── requirements.txt # Python dependencies
|
||||
│ └── .env.sample # Environment variable template
|
||||
├── v2/
|
||||
│ └── bot.py # Development/experimental version
|
||||
├── Dockerfile # Docker containerization
|
||||
├── README.md # This file
|
||||
└── claude.md # Development roadmap & upgrade notes
|
||||
```
|
||||
|
||||
## Upgrading from OpenWebUI
|
||||
|
||||
If you're upgrading from the previous OpenWebUI version:
|
||||
|
||||
1. **Update environment variables**: Rename `OPENWEBUI_API_BASE` → `LITELLM_API_BASE`, `OPENAI_API_KEY` → `LITELLM_API_KEY`
|
||||
2. **Set up LiteLLM proxy**: Follow setup instructions above
|
||||
3. **Install new dependencies**: Run `pip install -r requirements.txt`
|
||||
4. **Optional**: Customize `system_prompt.txt` for your use case
|
||||
|
||||
See `claude.md` for detailed upgrade documentation and future roadmap (MCP tools support, etc.).
|
||||
649
claude.md
Normal file
649
claude.md
Normal file
@@ -0,0 +1,649 @@
|
||||
# OpenWebUI Discord Bot - Upgrade Project
|
||||
|
||||
## Project Overview
|
||||
|
||||
This Discord bot currently interfaces with OpenWebUI to provide AI-powered responses. The goal is to upgrade it to:
|
||||
1. **Switch from OpenWebUI to LiteLLM Proxy** as the backend
|
||||
2. **Add MCP (Model Context Protocol) Tool Support**
|
||||
3. **Implement system prompt management within the application**
|
||||
|
||||
## Current Architecture
|
||||
|
||||
### Files Structure
|
||||
- **Main bot**: [v2/bot.py](v2/bot.py) - Current implementation
|
||||
- **Legacy bot**: [scripts/discordbot.py](scripts/discordbot.py) - Older version with slightly different approach
|
||||
- **Dependencies**: [v2/requirements.txt](v2/requirements.txt)
|
||||
- **Config**: [v2/.env.example](v2/.env.example)
|
||||
|
||||
### Current Implementation Details
|
||||
|
||||
#### Bot Features (v2/bot.py)
|
||||
- **Discord Integration**: Uses discord.py with message intents
|
||||
- **Trigger Methods**:
|
||||
- Bot mentions (@bot)
|
||||
- Direct messages (DMs)
|
||||
- **Message History**: Retrieves last 100 messages for context using `get_chat_history()`
|
||||
- **Image Support**: Downloads and encodes images as base64, sends to API
|
||||
- **API Client**: Uses OpenAI Python SDK pointing to OpenWebUI endpoint
|
||||
- **Message Format**: Embeds chat history in user message context
|
||||
|
||||
#### Current Message Flow
|
||||
1. User mentions bot or DMs it
|
||||
2. Bot fetches channel history (last 100 messages)
|
||||
3. Formats history as: `"AuthorName: message content"`
|
||||
4. Sends to OpenWebUI with format:
|
||||
```python
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "##CONTEXT##\n{history}\n##ENDCONTEXT##\n\n{user_message}"},
|
||||
{"type": "image_url", "image_url": {...}} # if images present
|
||||
]
|
||||
}
|
||||
```
|
||||
5. Returns AI response and replies to user
|
||||
|
||||
#### Current Limitations
|
||||
- **No system prompt**: Context is embedded in user messages
|
||||
- **No tool calling**: Cannot execute functions or use MCPs
|
||||
- **OpenWebUI dependency**: Tightly coupled to OpenWebUI API structure
|
||||
- **Simple history**: Just text concatenation, no proper conversation threading
|
||||
- **Synchronous image download**: Uses `requests.get()` in async context (should use aiohttp)
|
||||
|
||||
## Target Architecture: LiteLLM + MCP Tools
|
||||
|
||||
### Why LiteLLM?
|
||||
|
||||
LiteLLM is a unified proxy that:
|
||||
- **Standardizes API calls** across 100+ LLM providers (OpenAI, Anthropic, Google, etc.)
|
||||
- **Native tool/function calling support** via OpenAI-compatible API
|
||||
- **Built-in MCP support** for Model Context Protocol tools
|
||||
- **Load balancing** and fallback between models
|
||||
- **Cost tracking** and usage analytics
|
||||
- **Streaming support** for real-time responses
|
||||
|
||||
### LiteLLM Tool Calling
|
||||
|
||||
LiteLLM supports the OpenAI tools format:
|
||||
```python
|
||||
response = client.chat.completions.create(
|
||||
model="gpt-4",
|
||||
messages=[...],
|
||||
tools=[{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get current weather",
|
||||
"parameters": {...}
|
||||
}
|
||||
}],
|
||||
tool_choice="auto"
|
||||
)
|
||||
```
|
||||
|
||||
### MCP (Model Context Protocol) Overview
|
||||
|
||||
MCP is a standard protocol for:
|
||||
- **Exposing tools** to LLMs (functions they can call)
|
||||
- **Providing resources** (files, APIs, databases)
|
||||
- **Prompts/templates** for consistent interactions
|
||||
- **Sampling** for multi-step agentic behavior
|
||||
|
||||
**MCP Server Examples**:
|
||||
- `filesystem`: Read/write files
|
||||
- `github`: Access repos, create PRs
|
||||
- `postgres`: Query databases
|
||||
- `brave-search`: Web search
|
||||
- `slack`: Send messages, read channels
|
||||
|
||||
## Upgrade Plan
|
||||
|
||||
### Phase 1: Switch to LiteLLM Proxy
|
||||
|
||||
#### Configuration Changes
|
||||
1. Update environment variables:
|
||||
```env
|
||||
DISCORD_TOKEN=your_discord_bot_token
|
||||
LITELLM_API_KEY=your_litellm_api_key
|
||||
LITELLM_API_BASE=http://localhost:4000 # or your LiteLLM proxy URL
|
||||
MODEL_NAME=gpt-4-turbo-preview # or any LiteLLM-supported model
|
||||
SYSTEM_PROMPT=your_default_system_prompt # New!
|
||||
```
|
||||
|
||||
2. Keep using OpenAI SDK (LiteLLM is OpenAI-compatible):
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(
|
||||
api_key=os.getenv('LITELLM_API_KEY'),
|
||||
base_url=os.getenv('LITELLM_API_BASE')
|
||||
)
|
||||
```
|
||||
|
||||
#### Message Format Refactor
|
||||
**Current approach** (embedding context in user message):
|
||||
```python
|
||||
text_content = f"##CONTEXT##\n{context}\n##ENDCONTEXT##\n\n{user_message}"
|
||||
messages = [{"role": "user", "content": text_content}]
|
||||
```
|
||||
|
||||
**New approach** (proper conversation history):
|
||||
```python
|
||||
messages = [
|
||||
{"role": "system", "content": SYSTEM_PROMPT},
|
||||
# ... previous conversation messages with proper roles ...
|
||||
{"role": "user", "content": user_message}
|
||||
]
|
||||
```
|
||||
|
||||
#### Benefits
|
||||
- Better model understanding of conversation structure
|
||||
- Separate system instructions from conversation
|
||||
- Proper role attribution (user vs assistant)
|
||||
- More efficient token usage
|
||||
|
||||
### Phase 2: Add System Prompt Management
|
||||
|
||||
#### Implementation Options
|
||||
|
||||
**Option A: Simple Environment Variable**
|
||||
- Store in `.env` file
|
||||
- Good for: Single, static system prompt
|
||||
- Example: `SYSTEM_PROMPT="You are a helpful Discord assistant..."`
|
||||
|
||||
**Option B: File-Based System Prompt**
|
||||
- Store in separate file (e.g., `system_prompt.txt`)
|
||||
- Good for: Long, complex prompts that need version control
|
||||
- Hot-reload capability
|
||||
|
||||
**Option C: Per-Channel/Per-Guild Prompts**
|
||||
- Store in JSON/database mapping channel_id → system_prompt
|
||||
- Good for: Multi-tenant bot with different personalities per server
|
||||
- Example:
|
||||
```json
|
||||
{
|
||||
"123456789": "You are a coding assistant...",
|
||||
"987654321": "You are a gaming buddy..."
|
||||
}
|
||||
```
|
||||
|
||||
**Option D: User-Configurable Prompts**
|
||||
- Discord slash commands to set/view system prompt
|
||||
- Store in SQLite/JSON
|
||||
- Commands: `/setprompt`, `/viewprompt`, `/resetprompt`
|
||||
|
||||
**Recommended**: Start with Option B (file-based), add Option D later for flexibility.
|
||||
|
||||
#### System Prompt Best Practices
|
||||
1. **Define bot personality**: Tone, style, formality
|
||||
2. **Set boundaries**: What bot should/shouldn't do
|
||||
3. **Provide context**: "You are in a Discord server, users will mention you"
|
||||
4. **Handle images**: "When users attach images, describe them..."
|
||||
5. **Tool usage guidance**: "Use available tools when appropriate"
|
||||
|
||||
Example system prompt:
|
||||
```
|
||||
You are a helpful AI assistant integrated into Discord. Users will interact with you by mentioning you or sending direct messages.
|
||||
|
||||
Key behaviors:
|
||||
- Be concise and friendly
|
||||
- Use Discord markdown formatting when helpful (code blocks, bold, etc.)
|
||||
- When users attach images, analyze them and provide relevant insights
|
||||
- You have access to various tools - use them when they would help answer the user's question
|
||||
- If you're unsure about something, say so
|
||||
- Keep track of conversation context
|
||||
|
||||
You are not a human, and you should not pretend to be one. Be honest about your capabilities and limitations.
|
||||
```
|
||||
|
||||
### Phase 3: Implement MCP Tool Support
|
||||
|
||||
#### LiteLLM MCP Integration
|
||||
|
||||
LiteLLM can connect to MCP servers in two ways:
|
||||
|
||||
**1. Via LiteLLM Proxy Configuration**
|
||||
Configure in `litellm_config.yaml`:
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-4-with-tools
|
||||
litellm_params:
|
||||
model: gpt-4-turbo-preview
|
||||
api_key: os.environ/OPENAI_API_KEY
|
||||
|
||||
mcp_servers:
|
||||
filesystem:
|
||||
command: npx
|
||||
args: [-y, @modelcontextprotocol/server-filesystem, /allowed/path]
|
||||
github:
|
||||
command: npx
|
||||
args: [-y, @modelcontextprotocol/server-github]
|
||||
env:
|
||||
GITHUB_TOKEN: ${GITHUB_TOKEN}
|
||||
```
|
||||
|
||||
**2. Via Direct Tool Definitions in Bot**
|
||||
Define tools manually in the bot code:
|
||||
```python
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "search_web",
|
||||
"description": "Search the web for information",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "The search query"
|
||||
}
|
||||
},
|
||||
"required": ["query"]
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model=MODEL_NAME,
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto"
|
||||
)
|
||||
```
|
||||
|
||||
#### Tool Execution Flow
|
||||
|
||||
1. **Send message with tools available**:
|
||||
```python
|
||||
response = client.chat.completions.create(
|
||||
model=MODEL_NAME,
|
||||
messages=messages,
|
||||
tools=available_tools
|
||||
)
|
||||
```
|
||||
|
||||
2. **Check if model wants to use a tool**:
|
||||
```python
|
||||
if response.choices[0].message.tool_calls:
|
||||
for tool_call in response.choices[0].message.tool_calls:
|
||||
function_name = tool_call.function.name
|
||||
arguments = json.loads(tool_call.function.arguments)
|
||||
# Execute the function
|
||||
result = execute_tool(function_name, arguments)
|
||||
```
|
||||
|
||||
3. **Send tool results back to model**:
|
||||
```python
|
||||
messages.append({
|
||||
"role": "assistant",
|
||||
"content": None,
|
||||
"tool_calls": response.choices[0].message.tool_calls
|
||||
})
|
||||
messages.append({
|
||||
"role": "tool",
|
||||
"content": json.dumps(result),
|
||||
"tool_call_id": tool_call.id
|
||||
})
|
||||
|
||||
# Get final response
|
||||
final_response = client.chat.completions.create(
|
||||
model=MODEL_NAME,
|
||||
messages=messages,
|
||||
tools=available_tools
|
||||
)
|
||||
```
|
||||
|
||||
4. **Return final response to user**
|
||||
|
||||
#### Tool Implementation Patterns
|
||||
|
||||
**Pattern 1: Bot-Managed Tools**
|
||||
Implement tools directly in the bot:
|
||||
```python
|
||||
async def search_web(query: str) -> str:
|
||||
"""Execute web search"""
|
||||
# Use requests/aiohttp to call search API
|
||||
pass
|
||||
|
||||
async def get_weather(location: str) -> str:
|
||||
"""Get weather for location"""
|
||||
# Call weather API
|
||||
pass
|
||||
|
||||
AVAILABLE_TOOLS = {
|
||||
"search_web": search_web,
|
||||
"get_weather": get_weather,
|
||||
}
|
||||
|
||||
async def execute_tool(name: str, arguments: dict) -> str:
|
||||
if name in AVAILABLE_TOOLS:
|
||||
return await AVAILABLE_TOOLS[name](**arguments)
|
||||
return "Tool not found"
|
||||
```
|
||||
|
||||
**Pattern 2: MCP Server Proxy**
|
||||
Let LiteLLM proxy handle MCP servers (recommended):
|
||||
- Configure MCP servers in LiteLLM config
|
||||
- LiteLLM automatically exposes them as tools
|
||||
- Bot just passes tool calls through
|
||||
- Simpler bot code, more scalable
|
||||
|
||||
**Pattern 3: Hybrid**
|
||||
- Common tools via LiteLLM proxy MCP
|
||||
- Discord-specific tools in bot (e.g., "get_server_info", "list_channels")
|
||||
|
||||
#### Recommended Starter Tools
|
||||
|
||||
1. **Web Search** (via Brave/Google MCP server)
|
||||
- Let bot search for current information
|
||||
|
||||
2. **File Operations** (via filesystem MCP server - with restrictions!)
|
||||
- Read documentation, configs
|
||||
- Useful in developer-focused servers
|
||||
|
||||
3. **Wikipedia** (via wikipedia MCP server)
|
||||
- Factual information lookup
|
||||
|
||||
4. **Time/Date** (custom function)
|
||||
- Simple, no external dependency
|
||||
|
||||
5. **Discord Server Info** (custom function)
|
||||
- Get channel list, member count, server info
|
||||
- Discord-specific utility
|
||||
|
||||
### Phase 4: Improve Message History Management
|
||||
|
||||
#### Current Issues
|
||||
- Fetches all messages every time (inefficient)
|
||||
- No conversation threading (treats all channel messages as one context)
|
||||
- No token limit awareness
|
||||
- Channel history might contain irrelevant conversations
|
||||
|
||||
#### Improvements
|
||||
|
||||
**1. Per-Conversation Threading**
|
||||
```python
|
||||
# Track conversations by thread or by user
|
||||
conversation_storage = {
|
||||
"channel_id:user_id": [
|
||||
{"role": "user", "content": "..."},
|
||||
{"role": "assistant", "content": "..."},
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
**2. Token-Aware History Truncation**
|
||||
```python
|
||||
def trim_history(messages, max_tokens=4000):
|
||||
"""Keep only recent messages that fit in token budget"""
|
||||
# Use tiktoken to count tokens
|
||||
# Remove oldest messages until under limit
|
||||
pass
|
||||
```
|
||||
|
||||
**3. Message Deduplication**
|
||||
Only include messages directly related to bot conversations:
|
||||
- Messages mentioning bot
|
||||
- Bot's responses
|
||||
- Optionally: X messages before each bot mention for context
|
||||
|
||||
**4. Caching & Persistence**
|
||||
- Cache conversation history in memory
|
||||
- Optional: Persist to SQLite/Redis for bot restarts
|
||||
- Clear old conversations after inactivity
|
||||
|
||||
## Implementation Checklist
|
||||
|
||||
### Preparation
|
||||
- [ ] Set up LiteLLM proxy locally or remotely
|
||||
- [ ] Configure LiteLLM with desired model(s)
|
||||
- [ ] Decide on MCP servers to enable
|
||||
- [ ] Design system prompt strategy
|
||||
- [ ] Review token limits for target models
|
||||
|
||||
### Code Changes
|
||||
|
||||
#### File: v2/bot.py
|
||||
- [ ] Update imports (add `json`, improve `aiohttp` usage)
|
||||
- [ ] Change environment variables:
|
||||
- [ ] `OPENWEBUI_API_BASE` → `LITELLM_API_BASE`
|
||||
- [ ] Add `SYSTEM_PROMPT` or `SYSTEM_PROMPT_FILE`
|
||||
- [ ] Update OpenAI client initialization
|
||||
- [ ] Refactor `get_ai_response()`:
|
||||
- [ ] Add system message
|
||||
- [ ] Convert history to proper message format (alternating user/assistant)
|
||||
- [ ] Add tool support parameters
|
||||
- [ ] Implement tool execution loop
|
||||
- [ ] Refactor `get_chat_history()`:
|
||||
- [ ] Return structured messages instead of text concatenation
|
||||
- [ ] Filter for bot-relevant messages
|
||||
- [ ] Add token counting/truncation
|
||||
- [ ] Fix `download_image()` to use aiohttp instead of requests
|
||||
- [ ] Add tool definition functions
|
||||
- [ ] Add tool execution handler
|
||||
- [ ] Add error handling for tool failures
|
||||
|
||||
#### New File: v2/tools.py (optional)
|
||||
- [ ] Define tool schemas
|
||||
- [ ] Implement tool execution functions
|
||||
- [ ] Export tool registry
|
||||
|
||||
#### New File: v2/system_prompt.txt or system_prompts.json
|
||||
- [ ] Write default system prompt
|
||||
- [ ] Optional: Add per-guild prompts
|
||||
|
||||
#### File: v2/requirements.txt
|
||||
- [ ] Keep: `discord.py`, `openai`, `python-dotenv`
|
||||
- [ ] Add: `aiohttp` (if not using requests), `tiktoken` (for token counting)
|
||||
- [ ] Optional: `anthropic` (if using Claude directly), `litellm` (if using SDK directly)
|
||||
|
||||
#### File: v2/.env.example
|
||||
- [ ] Update variable names
|
||||
- [ ] Add system prompt variables
|
||||
- [ ] Document new configuration options
|
||||
|
||||
### Testing
|
||||
- [ ] Test basic message responses (no tools)
|
||||
- [ ] Test with images attached
|
||||
- [ ] Test tool calling with simple tool (e.g., get_time)
|
||||
- [ ] Test tool calling with external MCP server
|
||||
- [ ] Test conversation threading
|
||||
- [ ] Test token limit handling
|
||||
- [ ] Test error scenarios (API down, tool failure, etc.)
|
||||
- [ ] Test in multiple Discord servers/channels
|
||||
|
||||
### Documentation
|
||||
- [ ] Update README.md with new setup instructions
|
||||
- [ ] Document LiteLLM proxy setup
|
||||
- [ ] Document MCP server configuration
|
||||
- [ ] Add example system prompts
|
||||
- [ ] Document available tools
|
||||
- [ ] Add troubleshooting section
|
||||
|
||||
## Technical Considerations
|
||||
|
||||
### Token Management
|
||||
- Most models have 4k-128k token context windows
|
||||
- Message history can quickly consume tokens
|
||||
- Reserve tokens for:
|
||||
- System prompt: ~500-1000 tokens
|
||||
- Tool definitions: ~100-500 tokens per tool
|
||||
- Response: ~1000-2000 tokens
|
||||
- History: remaining tokens
|
||||
|
||||
### Rate Limiting
|
||||
- Discord: 5 requests per 5 seconds per channel
|
||||
- LLM APIs: Varies by provider (OpenAI: ~3500 RPM for GPT-4)
|
||||
- Implement queuing if needed
|
||||
|
||||
### Error Handling
|
||||
- API timeouts: Retry with exponential backoff
|
||||
- Tool execution failures: Return error message to model
|
||||
- Discord API errors: Log and notify user
|
||||
- Invalid tool calls: Validate before execution
|
||||
|
||||
### Security Considerations
|
||||
- **Tool access control**: Don't expose dangerous tools (file delete, system commands)
|
||||
- **Input validation**: Sanitize tool arguments
|
||||
- **Rate limiting**: Prevent abuse of expensive tools (web search)
|
||||
- **API key security**: Never log or expose API keys
|
||||
- **MCP filesystem access**: Restrict to safe directories only
|
||||
|
||||
### Cost Optimization
|
||||
- Use smaller models for simple queries (gpt-3.5-turbo)
|
||||
- Implement streaming for better UX
|
||||
- Cache common queries
|
||||
- Trim history aggressively
|
||||
- Consider LiteLLM's caching features
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
### Short Term
|
||||
- [ ] Add slash commands for bot configuration
|
||||
- [ ] Implement conversation reset command
|
||||
- [ ] Add support for Discord threads
|
||||
- [ ] Stream responses for long outputs
|
||||
- [ ] Add reaction-based tool approval (user confirms before execution)
|
||||
|
||||
### Medium Term
|
||||
- [ ] Multi-modal support (voice, more image formats)
|
||||
- [ ] Per-user conversation isolation
|
||||
- [ ] Tool usage analytics and logging
|
||||
- [ ] Custom MCP server for Discord-specific tools
|
||||
- [ ] Web dashboard for bot management
|
||||
|
||||
### Long Term
|
||||
- [ ] Agentic workflows (multi-step tool usage)
|
||||
- [ ] Memory/RAG for long-term context
|
||||
- [ ] Multiple bot personalities per server
|
||||
- [ ] Integration with Discord's scheduled events
|
||||
- [ ] Voice channel integration (TTS/STT)
|
||||
|
||||
## Resources
|
||||
|
||||
### Documentation
|
||||
- **LiteLLM Docs**: https://docs.litellm.ai/
|
||||
- **LiteLLM Tools/Functions**: https://docs.litellm.ai/docs/completion/function_call
|
||||
- **MCP Specification**: https://modelcontextprotocol.io/
|
||||
- **MCP Server Examples**: https://github.com/modelcontextprotocol/servers
|
||||
- **Discord.py Docs**: https://discordpy.readthedocs.io/
|
||||
- **OpenAI API Docs**: https://platform.openai.com/docs/guides/function-calling
|
||||
|
||||
### Example MCP Servers
|
||||
- `@modelcontextprotocol/server-filesystem`: File operations
|
||||
- `@modelcontextprotocol/server-github`: GitHub integration
|
||||
- `@modelcontextprotocol/server-postgres`: Database queries
|
||||
- `@modelcontextprotocol/server-brave-search`: Web search
|
||||
- `@modelcontextprotocol/server-slack`: Slack integration
|
||||
- `@modelcontextprotocol/server-memory`: Persistent memory
|
||||
|
||||
### Tools for Development
|
||||
- **tiktoken**: Token counting (OpenAI tokenizer)
|
||||
- **litellm CLI**: `litellm --model gpt-4 --drop_params` for testing
|
||||
- **Postman**: Test LiteLLM API endpoints
|
||||
- **Docker**: Containerize LiteLLM proxy
|
||||
|
||||
## Questions to Resolve
|
||||
|
||||
1. **Which LiteLLM deployment?**
|
||||
- Self-hosted proxy (more control, more maintenance)
|
||||
- Hosted service (easier, potential cost)
|
||||
|
||||
2. **Which models to support?**
|
||||
- Single model (simpler)
|
||||
- Multiple models with fallback (more robust)
|
||||
- User-selectable models (more flexible)
|
||||
|
||||
3. **MCP server hosting?**
|
||||
- Same machine as bot
|
||||
- Separate server
|
||||
- Cloud functions
|
||||
|
||||
4. **System prompt strategy?**
|
||||
- Single global prompt
|
||||
- Per-guild prompts
|
||||
- User-configurable
|
||||
|
||||
5. **Tool approval flow?**
|
||||
- Automatic execution (faster but riskier)
|
||||
- User confirmation for sensitive tools (safer but slower)
|
||||
|
||||
6. **Conversation persistence?**
|
||||
- In-memory only (simple, lost on restart)
|
||||
- SQLite (persistent, moderate complexity)
|
||||
- Redis (distributed, more setup)
|
||||
|
||||
## Current Code Analysis
|
||||
|
||||
### v2/bot.py Strengths
|
||||
- Clean, simple structure
|
||||
- Proper async/await usage
|
||||
- Good image handling
|
||||
- Type hints in newer version
|
||||
|
||||
### v2/bot.py Issues to Fix
|
||||
- Line 44: Using synchronous `requests.get()` in async function
|
||||
- Lines 62-77: Embedding history in user message instead of proper conversation format
|
||||
- Line 41: `channel_history` dict declared but never used
|
||||
- No error handling for OpenAI API errors besides generic try/catch
|
||||
- No rate limiting
|
||||
- No conversation threading
|
||||
- History includes ALL channel messages, not just bot-relevant ones
|
||||
- No system prompt support
|
||||
|
||||
### scripts/discordbot.py Differences
|
||||
- Has system message (line 67) - better approach!
|
||||
- Slightly different message structure
|
||||
- Otherwise similar implementation
|
||||
|
||||
## Recommended Migration Path
|
||||
|
||||
**Step 1**: Quick wins (minimal changes)
|
||||
1. Add system prompt support using `scripts/discordbot.py` pattern
|
||||
2. Fix async image download (use aiohttp)
|
||||
3. Update env vars and client to point to LiteLLM
|
||||
|
||||
**Step 2**: Core refactor (moderate changes)
|
||||
1. Refactor message history to proper conversation format
|
||||
2. Implement token-aware history truncation
|
||||
3. Add basic tool support infrastructure
|
||||
|
||||
**Step 3**: Tool integration (significant changes)
|
||||
1. Define initial tool set
|
||||
2. Implement tool execution loop
|
||||
3. Add error handling for tool failures
|
||||
|
||||
**Step 4**: Polish (incremental improvements)
|
||||
1. Add slash commands for configuration
|
||||
2. Improve conversation management
|
||||
3. Add monitoring and logging
|
||||
|
||||
This approach allows you to test at each step and provides incremental value.
|
||||
|
||||
---
|
||||
|
||||
## Getting Started
|
||||
|
||||
When you're ready to begin implementation:
|
||||
|
||||
1. **Set up LiteLLM proxy**:
|
||||
```bash
|
||||
pip install litellm
|
||||
litellm --model gpt-4 --drop_params
|
||||
# Or use Docker: docker run -p 4000:4000 ghcr.io/berriai/litellm:main
|
||||
```
|
||||
|
||||
2. **Test LiteLLM endpoint**:
|
||||
```bash
|
||||
curl -X POST http://localhost:4000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"model": "gpt-4", "messages": [{"role": "user", "content": "Hello!"}]}'
|
||||
```
|
||||
|
||||
3. **Start with system prompt**: Implement system prompt support first as low-risk improvement
|
||||
|
||||
4. **Iterate on tools**: Start with one simple tool, then expand
|
||||
|
||||
Let me know which phase you'd like to tackle first!
|
||||
@@ -1,4 +1,24 @@
|
||||
# Discord Bot Token - Get from https://discord.com/developers/applications
|
||||
DISCORD_TOKEN=your_discord_bot_token
|
||||
OPENAI_API_KEY=your_openwebui_api_key
|
||||
OPENWEBUI_API_BASE=http://your_openwebui_instance:port/api
|
||||
MODEL_NAME="Your_Model_Name"
|
||||
|
||||
# LiteLLM API Configuration
|
||||
LITELLM_API_KEY=sk-1234
|
||||
LITELLM_API_BASE=http://localhost:4000
|
||||
|
||||
# Model name (any model supported by your LiteLLM proxy)
|
||||
MODEL_NAME=gpt-4-turbo-preview
|
||||
|
||||
# System Prompt Configuration (optional)
|
||||
SYSTEM_PROMPT_FILE=./system_prompt.txt
|
||||
|
||||
# Maximum tokens to use for conversation history (optional, default: 3000)
|
||||
MAX_HISTORY_TOKENS=3000
|
||||
|
||||
# Enable debug logging (optional, default: false)
|
||||
# Set to 'true' to see detailed logs for troubleshooting
|
||||
DEBUG_LOGGING=false
|
||||
|
||||
# Enable MCP tools integration (optional, default: false)
|
||||
# Set to 'true' to allow the bot to use tools configured in your LiteLLM proxy
|
||||
# Tools are auto-executed without user confirmation
|
||||
ENABLE_TOOLS=false
|
||||
@@ -3,33 +3,52 @@ import discord
|
||||
from discord.ext import commands
|
||||
from openai import OpenAI
|
||||
import base64
|
||||
import requests
|
||||
from io import BytesIO
|
||||
from collections import deque
|
||||
from dotenv import load_dotenv
|
||||
import json
|
||||
import datetime
|
||||
import aiohttp
|
||||
from typing import Dict, Any, List
|
||||
import tiktoken
|
||||
import httpx
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv()
|
||||
|
||||
# Get environment variables
|
||||
DISCORD_TOKEN = os.getenv('DISCORD_TOKEN')
|
||||
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
||||
OPENWEBUI_API_BASE = os.getenv('OPENWEBUI_API_BASE')
|
||||
LITELLM_API_KEY = os.getenv('LITELLM_API_KEY')
|
||||
LITELLM_API_BASE = os.getenv('LITELLM_API_BASE')
|
||||
MODEL_NAME = os.getenv('MODEL_NAME')
|
||||
SYSTEM_PROMPT_FILE = os.getenv('SYSTEM_PROMPT_FILE', './system_prompt.txt')
|
||||
MAX_HISTORY_TOKENS = int(os.getenv('MAX_HISTORY_TOKENS', '3000'))
|
||||
DEBUG_LOGGING = os.getenv('DEBUG_LOGGING', 'false').lower() == 'true'
|
||||
ENABLE_TOOLS = os.getenv('ENABLE_TOOLS', 'false').lower() == 'true'
|
||||
|
||||
# Configure OpenAI client to point to OpenWebUI
|
||||
def debug_log(message: str):
|
||||
"""Print debug message if DEBUG_LOGGING is enabled"""
|
||||
if DEBUG_LOGGING:
|
||||
print(f"[DEBUG] {message}")
|
||||
|
||||
# Load system prompt from file
|
||||
def load_system_prompt():
|
||||
"""Load system prompt from file, with fallback to default"""
|
||||
try:
|
||||
with open(SYSTEM_PROMPT_FILE, 'r', encoding='utf-8') as f:
|
||||
return f.read().strip()
|
||||
except FileNotFoundError:
|
||||
return "You are a helpful AI assistant integrated into Discord."
|
||||
|
||||
SYSTEM_PROMPT = load_system_prompt()
|
||||
|
||||
# Configure OpenAI client to point to LiteLLM
|
||||
client = OpenAI(
|
||||
api_key=os.getenv('OPENAI_API_KEY'),
|
||||
base_url=os.getenv('OPENWEBUI_API_BASE') # e.g., "http://localhost:8080/v1"
|
||||
api_key=LITELLM_API_KEY,
|
||||
base_url=LITELLM_API_BASE # e.g., "http://localhost:4000"
|
||||
)
|
||||
|
||||
# Configure OpenAI
|
||||
# TODO: The 'openai.api_base' option isn't read in the client API. You will need to pass it when you instantiate the client, e.g. 'OpenAI(base_url=OPENWEBUI_API_BASE)'
|
||||
# openai.api_base = OPENWEBUI_API_BASE
|
||||
# Initialize tokenizer for token counting
|
||||
try:
|
||||
encoding = tiktoken.encoding_for_model("gpt-4")
|
||||
except KeyError:
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
# Initialize Discord bot
|
||||
intents = discord.Intents.default()
|
||||
@@ -37,42 +56,255 @@ intents.message_content = True
|
||||
intents.messages = True
|
||||
bot = commands.Bot(command_prefix='!', intents=intents)
|
||||
|
||||
# Message history cache
|
||||
channel_history = {}
|
||||
# Message history cache - stores recent conversations per channel
|
||||
channel_history: Dict[int, List[Dict[str, Any]]] = {}
|
||||
|
||||
async def download_image(url):
|
||||
response = requests.get(url)
|
||||
if response.status_code == 200:
|
||||
image_data = BytesIO(response.content)
|
||||
base64_image = base64.b64encode(image_data.read()).decode('utf-8')
|
||||
return base64_image
|
||||
def count_tokens(text: str) -> int:
|
||||
"""Count tokens in a text string"""
|
||||
try:
|
||||
return len(encoding.encode(text))
|
||||
except Exception:
|
||||
# Fallback: rough estimate (1 token ≈ 4 characters)
|
||||
return len(text) // 4
|
||||
|
||||
async def download_image(url: str) -> str | None:
|
||||
"""Download image and convert to base64 using async aiohttp"""
|
||||
try:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(url, timeout=aiohttp.ClientTimeout(total=10)) as response:
|
||||
if response.status == 200:
|
||||
image_data = await response.read()
|
||||
base64_image = base64.b64encode(image_data).decode('utf-8')
|
||||
return base64_image
|
||||
except Exception as e:
|
||||
print(f"Error downloading image from {url}: {e}")
|
||||
return None
|
||||
|
||||
async def get_chat_history(channel, limit=100):
|
||||
async def get_available_mcp_tools():
|
||||
"""Query LiteLLM for available MCP servers and tools, convert to OpenAI format"""
|
||||
try:
|
||||
base_url = LITELLM_API_BASE.rstrip('/')
|
||||
headers = {"x-litellm-api-key": LITELLM_API_KEY}
|
||||
|
||||
async with httpx.AsyncClient(timeout=30.0) as http_client:
|
||||
# Get MCP server configuration
|
||||
server_response = await http_client.get(
|
||||
f"{base_url}/v1/mcp/server",
|
||||
headers=headers
|
||||
)
|
||||
|
||||
if server_response.status_code == 200:
|
||||
server_info = server_response.json()
|
||||
debug_log(f"MCP server info: found {len(server_info) if isinstance(server_info, list) else 0} servers")
|
||||
|
||||
# Get available MCP tools
|
||||
tools_response = await http_client.get(
|
||||
f"{base_url}/v1/mcp/tools",
|
||||
headers=headers
|
||||
)
|
||||
|
||||
if tools_response.status_code == 200:
|
||||
tools_data = tools_response.json()
|
||||
|
||||
# Tools come in format: {"tools": [...]}
|
||||
mcp_tools = tools_data.get("tools", []) if isinstance(tools_data, dict) else tools_data
|
||||
debug_log(f"Found {len(mcp_tools) if isinstance(mcp_tools, list) else 0} MCP tools")
|
||||
|
||||
# Convert MCP tools to OpenAI function calling format
|
||||
openai_tools = []
|
||||
for tool in mcp_tools[:50]: # Limit to first 50 tools to avoid overwhelming the model
|
||||
if isinstance(tool, dict) and "name" in tool:
|
||||
openai_tool = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool["name"],
|
||||
"description": tool.get("description", ""),
|
||||
"parameters": tool.get("inputSchema", {})
|
||||
}
|
||||
}
|
||||
openai_tools.append(openai_tool)
|
||||
|
||||
debug_log(f"Converted {len(openai_tools)} tools to OpenAI format")
|
||||
|
||||
# Return both server info and converted tools
|
||||
return {
|
||||
"server": server_info,
|
||||
"tools": openai_tools,
|
||||
"tool_count": len(openai_tools)
|
||||
}
|
||||
else:
|
||||
debug_log(f"MCP tools endpoint returned {tools_response.status_code}: {tools_response.text}")
|
||||
else:
|
||||
debug_log(f"MCP server endpoint returned {server_response.status_code}: {server_response.text}")
|
||||
|
||||
except Exception as e:
|
||||
debug_log(f"Error fetching MCP tools: {e}")
|
||||
|
||||
return None
|
||||
|
||||
async def get_chat_history(channel, bot_user_id: int, limit: int = 50) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Retrieve chat history and format as proper conversation messages.
|
||||
Only includes messages relevant to bot conversations.
|
||||
Returns list of message dicts with proper role attribution.
|
||||
Supports both regular channels and threads.
|
||||
"""
|
||||
messages = []
|
||||
total_tokens = 0
|
||||
|
||||
# Check if this is a thread
|
||||
is_thread = isinstance(channel, discord.Thread)
|
||||
|
||||
debug_log(f"Fetching history - is_thread: {is_thread}, channel: {channel.name if hasattr(channel, 'name') else 'DM'}")
|
||||
|
||||
# For threads, we want ALL messages in the thread (not just bot-related)
|
||||
# For channels, we only want bot-related messages
|
||||
|
||||
message_count = 0
|
||||
skipped_system = 0
|
||||
|
||||
# For threads, fetch the context including parent message if it exists
|
||||
if is_thread:
|
||||
try:
|
||||
# Get the starter message (first message in thread)
|
||||
if channel.starter_message:
|
||||
starter = channel.starter_message
|
||||
else:
|
||||
starter = await channel.fetch_message(channel.id)
|
||||
|
||||
# If the starter message is replying to another message, fetch that parent
|
||||
if starter and starter.reference and starter.reference.message_id:
|
||||
try:
|
||||
parent_message = await channel.parent.fetch_message(starter.reference.message_id)
|
||||
if parent_message and (parent_message.type == discord.MessageType.default or parent_message.type == discord.MessageType.reply):
|
||||
is_bot_parent = parent_message.author.id == bot_user_id
|
||||
role = "assistant" if is_bot_parent else "user"
|
||||
content = f"{parent_message.author.display_name}: {parent_message.content}" if not is_bot_parent else parent_message.content
|
||||
|
||||
# Remove bot mention if present
|
||||
if not is_bot_parent and bot_user_id:
|
||||
content = content.replace(f'<@{bot_user_id}>', '').strip()
|
||||
|
||||
msg = {"role": role, "content": content}
|
||||
msg_tokens = count_tokens(content)
|
||||
|
||||
if msg_tokens <= MAX_HISTORY_TOKENS:
|
||||
messages.append(msg)
|
||||
total_tokens += msg_tokens
|
||||
message_count += 1
|
||||
debug_log(f"Added parent message: role={role}, content_preview={content[:50]}...")
|
||||
except Exception as e:
|
||||
debug_log(f"Could not fetch parent message: {e}")
|
||||
|
||||
# Add the starter message itself
|
||||
if starter and (starter.type == discord.MessageType.default or starter.type == discord.MessageType.reply):
|
||||
is_bot_starter = starter.author.id == bot_user_id
|
||||
role = "assistant" if is_bot_starter else "user"
|
||||
content = f"{starter.author.display_name}: {starter.content}" if not is_bot_starter else starter.content
|
||||
|
||||
# Remove bot mention if present
|
||||
if not is_bot_starter and bot_user_id:
|
||||
content = content.replace(f'<@{bot_user_id}>', '').strip()
|
||||
|
||||
msg = {"role": role, "content": content}
|
||||
msg_tokens = count_tokens(content)
|
||||
|
||||
if total_tokens + msg_tokens <= MAX_HISTORY_TOKENS:
|
||||
messages.append(msg)
|
||||
total_tokens += msg_tokens
|
||||
message_count += 1
|
||||
debug_log(f"Added thread starter: role={role}, content_preview={content[:50]}...")
|
||||
except Exception as e:
|
||||
debug_log(f"Could not fetch thread messages: {e}")
|
||||
|
||||
# Fetch history from the channel/thread
|
||||
async for message in channel.history(limit=limit):
|
||||
content = f"{message.author.name}: {message.content}"
|
||||
message_count += 1
|
||||
|
||||
# Handle attachments (images)
|
||||
for attachment in message.attachments:
|
||||
if any(attachment.filename.lower().endswith(ext) for ext in ['.png', '.jpg', '.jpeg', '.gif', '.webp']):
|
||||
content += f" [Image: {attachment.url}]"
|
||||
# Skip system messages (thread starters, pins, etc.)
|
||||
if message.type != discord.MessageType.default and message.type != discord.MessageType.reply:
|
||||
skipped_system += 1
|
||||
debug_log(f"Skipping system message type: {message.type}")
|
||||
continue
|
||||
|
||||
messages.append(content)
|
||||
return "\n".join(reversed(messages))
|
||||
# Determine if we should include this message
|
||||
is_bot_message = message.author.id == bot_user_id
|
||||
is_bot_mentioned = any(mention.id == bot_user_id for mention in message.mentions)
|
||||
is_dm = isinstance(channel, discord.DMChannel)
|
||||
|
||||
# In threads: include ALL messages for full context
|
||||
# In regular channels: only include bot-related messages
|
||||
# In DMs: include all messages
|
||||
if is_thread or is_dm:
|
||||
should_include = True
|
||||
else:
|
||||
should_include = is_bot_message or is_bot_mentioned
|
||||
|
||||
if not should_include:
|
||||
continue
|
||||
|
||||
# Determine role
|
||||
role = "assistant" if is_bot_message else "user"
|
||||
|
||||
# Build content with author name in threads for multi-user context
|
||||
if is_thread and not is_bot_message:
|
||||
# Include username in threads for clarity
|
||||
content = f"{message.author.display_name}: {message.content}"
|
||||
else:
|
||||
content = message.content
|
||||
|
||||
# Remove bot mention from user messages
|
||||
if not is_bot_message and is_bot_mentioned:
|
||||
content = content.replace(f'<@{bot_user_id}>', '').strip()
|
||||
|
||||
# Note: We'll handle images separately in the main flow
|
||||
# For history, we just note that images were present
|
||||
if message.attachments:
|
||||
image_count = sum(1 for att in message.attachments
|
||||
if any(att.filename.lower().endswith(ext)
|
||||
for ext in ['.png', '.jpg', '.jpeg', '.gif', '.webp']))
|
||||
if image_count > 0:
|
||||
content += f" [attached {image_count} image(s)]"
|
||||
|
||||
# Add to messages with token counting
|
||||
msg = {"role": role, "content": content}
|
||||
msg_tokens = count_tokens(content)
|
||||
|
||||
# Check if adding this message would exceed token limit
|
||||
if total_tokens + msg_tokens > MAX_HISTORY_TOKENS:
|
||||
break
|
||||
|
||||
messages.append(msg)
|
||||
total_tokens += msg_tokens
|
||||
debug_log(f"Added message: role={role}, content_preview={content[:50]}...")
|
||||
|
||||
# Reverse to get chronological order (oldest first)
|
||||
debug_log(f"Processed {message_count} messages, skipped {skipped_system} system messages")
|
||||
debug_log(f"Total messages collected: {len(messages)}, total tokens: {total_tokens}")
|
||||
return list(reversed(messages))
|
||||
|
||||
|
||||
async def get_ai_response(context, user_message, image_urls=None):
|
||||
async def get_ai_response(history_messages: List[Dict[str, Any]], user_message: str, image_urls: List[str] = None) -> str:
|
||||
"""
|
||||
Get AI response using LiteLLM with proper conversation history and tool calling support.
|
||||
|
||||
system_message = f"\"\"\"Previous conversation context:{context}"""
|
||||
Args:
|
||||
history_messages: List of previous conversation messages with roles
|
||||
user_message: Current user message
|
||||
image_urls: Optional list of image URLs to include
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": system_message},
|
||||
{"role": "user", "content": [] if image_urls else user_message}
|
||||
]
|
||||
Returns:
|
||||
AI response string
|
||||
"""
|
||||
# Start with system prompt
|
||||
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
||||
|
||||
# Handle messages with images differently
|
||||
# Add conversation history
|
||||
messages.extend(history_messages)
|
||||
|
||||
# Build current user message
|
||||
if image_urls:
|
||||
# Multi-modal message with text and images
|
||||
content_parts = [{"type": "text", "text": user_message}]
|
||||
|
||||
for url in image_urls:
|
||||
@@ -84,16 +316,77 @@ async def get_ai_response(context, user_message, image_urls=None):
|
||||
"url": f"data:image/jpeg;base64,{base64_image}"
|
||||
}
|
||||
})
|
||||
messages[1]["content"] = content_parts
|
||||
messages.append({"role": "user", "content": content_parts})
|
||||
else:
|
||||
# Text-only message
|
||||
messages.append({"role": "user", "content": user_message})
|
||||
|
||||
try:
|
||||
response = client.chat.completions.create(
|
||||
model=MODEL_NAME,
|
||||
messages=messages
|
||||
)
|
||||
# Build request parameters
|
||||
request_params = {
|
||||
"model": MODEL_NAME,
|
||||
"messages": messages,
|
||||
"temperature": 0.7,
|
||||
}
|
||||
|
||||
# Add MCP tools if enabled
|
||||
if ENABLE_TOOLS:
|
||||
debug_log("Tools enabled - fetching and converting MCP tools")
|
||||
|
||||
# Query and convert MCP tools to OpenAI format
|
||||
mcp_info = await get_available_mcp_tools()
|
||||
if mcp_info and isinstance(mcp_info, dict):
|
||||
openai_tools = mcp_info.get("tools", [])
|
||||
if openai_tools and isinstance(openai_tools, list) and len(openai_tools) > 0:
|
||||
request_params["tools"] = openai_tools
|
||||
request_params["tool_choice"] = "auto"
|
||||
debug_log(f"Added {len(openai_tools)} tools to request")
|
||||
else:
|
||||
debug_log("No tools available to add to request")
|
||||
else:
|
||||
debug_log("Failed to fetch MCP tools")
|
||||
|
||||
debug_log(f"Calling chat completions with {len(request_params.get('tools', []))} tools")
|
||||
response = client.chat.completions.create(**request_params)
|
||||
|
||||
# Handle tool calls if present
|
||||
response_message = response.choices[0].message
|
||||
tool_calls = getattr(response_message, 'tool_calls', None)
|
||||
|
||||
if tool_calls and len(tool_calls) > 0:
|
||||
debug_log(f"Model requested {len(tool_calls)} tool calls")
|
||||
|
||||
# Add assistant's response with tool calls to messages
|
||||
messages.append(response_message)
|
||||
|
||||
# Execute each tool call - add placeholder responses
|
||||
# TODO: Implement actual MCP tool execution via LiteLLM proxy
|
||||
for tool_call in tool_calls:
|
||||
function_name = tool_call.function.name
|
||||
function_args = tool_call.function.arguments
|
||||
|
||||
debug_log(f"Tool call requested: {function_name} with args: {function_args}")
|
||||
|
||||
# Placeholder response - in production this would execute via MCP
|
||||
messages.append({
|
||||
"role": "tool",
|
||||
"tool_call_id": tool_call.id,
|
||||
"name": function_name,
|
||||
"content": f"Tool execution via MCP is being set up. Tool {function_name} was called with arguments: {function_args}"
|
||||
})
|
||||
|
||||
# Get final response from model after tool execution
|
||||
debug_log("Getting final response after tool execution")
|
||||
final_response = client.chat.completions.create(**request_params)
|
||||
return final_response.choices[0].message.content
|
||||
|
||||
return response.choices[0].message.content
|
||||
|
||||
except Exception as e:
|
||||
return f"Error: {str(e)}"
|
||||
error_msg = f"Error calling LiteLLM API: {str(e)}"
|
||||
print(error_msg)
|
||||
debug_log(f"Exception details: {e}")
|
||||
return error_msg
|
||||
|
||||
@bot.event
|
||||
async def on_message(message):
|
||||
@@ -101,6 +394,10 @@ async def on_message(message):
|
||||
if message.author == bot.user:
|
||||
return
|
||||
|
||||
# Ignore system messages (thread starter, pins, etc.)
|
||||
if message.type != discord.MessageType.default and message.type != discord.MessageType.reply:
|
||||
return
|
||||
|
||||
should_respond = False
|
||||
|
||||
# Check if bot was mentioned
|
||||
@@ -111,10 +408,32 @@ async def on_message(message):
|
||||
if isinstance(message.channel, discord.DMChannel):
|
||||
should_respond = True
|
||||
|
||||
# Check if message is in a thread
|
||||
if isinstance(message.channel, discord.Thread):
|
||||
# Check if thread was started from a bot message
|
||||
try:
|
||||
starter = message.channel.starter_message
|
||||
if not starter:
|
||||
starter = await message.channel.fetch_message(message.channel.id)
|
||||
|
||||
# If thread was started from bot's message, auto-respond
|
||||
if starter and starter.author.id == bot.user.id:
|
||||
should_respond = True
|
||||
debug_log("Thread started by bot - auto-responding")
|
||||
# If thread started from user message, only respond if mentioned
|
||||
elif bot.user in message.mentions:
|
||||
should_respond = True
|
||||
debug_log("Thread started by user - responding due to mention")
|
||||
except Exception as e:
|
||||
debug_log(f"Could not determine thread starter: {e}")
|
||||
# Default: only respond if mentioned
|
||||
if bot.user in message.mentions:
|
||||
should_respond = True
|
||||
|
||||
if should_respond:
|
||||
async with message.channel.typing():
|
||||
# Get chat history
|
||||
history = await get_chat_history(message.channel)
|
||||
# Get chat history with proper conversation format
|
||||
history_messages = await get_chat_history(message.channel, bot.user.id)
|
||||
|
||||
# Remove bot mention from the message
|
||||
user_message = message.content.replace(f'<@{bot.user.id}>', '').strip()
|
||||
@@ -125,11 +444,17 @@ async def on_message(message):
|
||||
if any(attachment.filename.lower().endswith(ext) for ext in ['.png', '.jpg', '.jpeg', '.gif', '.webp']):
|
||||
image_urls.append(attachment.url)
|
||||
|
||||
# Get AI response
|
||||
response = await get_ai_response(history, user_message, image_urls)
|
||||
# Get AI response with proper conversation history
|
||||
response = await get_ai_response(history_messages, user_message, image_urls if image_urls else None)
|
||||
|
||||
# Send response
|
||||
await message.reply(response)
|
||||
# Send response (split if too long for Discord's 2000 char limit)
|
||||
if len(response) > 2000:
|
||||
# Split into chunks
|
||||
chunks = [response[i:i+2000] for i in range(0, len(response), 2000)]
|
||||
for chunk in chunks:
|
||||
await message.reply(chunk)
|
||||
else:
|
||||
await message.reply(response)
|
||||
|
||||
await bot.process_commands(message)
|
||||
|
||||
@@ -139,10 +464,16 @@ async def on_ready():
|
||||
|
||||
|
||||
def main():
|
||||
if not all([DISCORD_TOKEN, OPENAI_API_KEY, OPENWEBUI_API_BASE, MODEL_NAME]):
|
||||
if not all([DISCORD_TOKEN, LITELLM_API_KEY, LITELLM_API_BASE, MODEL_NAME]):
|
||||
print("Error: Missing required environment variables")
|
||||
print(f"DISCORD_TOKEN: {'✓' if DISCORD_TOKEN else '✗'}")
|
||||
print(f"LITELLM_API_KEY: {'✓' if LITELLM_API_KEY else '✗'}")
|
||||
print(f"LITELLM_API_BASE: {'✓' if LITELLM_API_BASE else '✗'}")
|
||||
print(f"MODEL_NAME: {'✓' if MODEL_NAME else '✗'}")
|
||||
return
|
||||
|
||||
print(f"System Prompt loaded from: {SYSTEM_PROMPT_FILE}")
|
||||
print(f"Max history tokens: {MAX_HISTORY_TOKENS}")
|
||||
bot.run(DISCORD_TOKEN)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
discord.py
|
||||
openai
|
||||
python-dotenv
|
||||
requests
|
||||
discord.py>=2.0.0
|
||||
openai>=1.0.0
|
||||
python-dotenv>=1.0.0
|
||||
aiohttp>=3.8.0
|
||||
tiktoken>=0.5.0
|
||||
httpx>=0.25.0
|
||||
18
scripts/system_prompt.txt
Normal file
18
scripts/system_prompt.txt
Normal file
@@ -0,0 +1,18 @@
|
||||
You are a helpful AI assistant integrated into Discord. Users will interact with you by mentioning you, sending direct messages, or chatting in threads.
|
||||
|
||||
Key behaviors:
|
||||
- Be concise and friendly in your responses
|
||||
- Use Discord markdown formatting when helpful (code blocks, bold, italics, etc.)
|
||||
- When users attach images, analyze them and provide relevant insights
|
||||
- Keep track of conversation context from the chat history provided
|
||||
- In threads, you have access to the full conversation context - reference previous messages when relevant
|
||||
- In regular channels, you only see messages where you were mentioned
|
||||
- If you're unsure about something, acknowledge it honestly
|
||||
- Provide helpful and accurate information
|
||||
|
||||
Tool capabilities:
|
||||
- You have access to various tools and integrations (like GitHub, file systems, etc.) that can help you accomplish tasks
|
||||
- When appropriate, use available tools to provide more accurate and helpful responses
|
||||
- If you use a tool, explain what you're doing so users understand the process
|
||||
|
||||
You are an AI assistant, not a human. Be transparent about your capabilities and limitations.
|
||||
@@ -1,4 +1,24 @@
|
||||
# Discord Bot Token - Get from https://discord.com/developers/applications
|
||||
DISCORD_TOKEN=your_discord_bot_token
|
||||
OPENAI_API_KEY=your_openai_api_key
|
||||
OPENWEBUI_API_BASE=http://your.api.endpoint/v1
|
||||
MODEL_NAME="Your_Model_Name"
|
||||
|
||||
# LiteLLM API Configuration
|
||||
LITELLM_API_KEY=sk-1234
|
||||
LITELLM_API_BASE=http://localhost:4000
|
||||
|
||||
# Model name (any model supported by your LiteLLM proxy)
|
||||
MODEL_NAME=gpt-4-turbo-preview
|
||||
|
||||
# System Prompt Configuration (optional)
|
||||
SYSTEM_PROMPT_FILE=./system_prompt.txt
|
||||
|
||||
# Maximum tokens to use for conversation history (optional, default: 3000)
|
||||
MAX_HISTORY_TOKENS=3000
|
||||
|
||||
# Enable debug logging (optional, default: false)
|
||||
# Set to 'true' to see detailed logs for troubleshooting
|
||||
DEBUG_LOGGING=false
|
||||
|
||||
# Enable MCP tools integration (optional, default: false)
|
||||
# Set to 'true' to allow the bot to use tools configured in your LiteLLM proxy
|
||||
# Tools are auto-executed without user confirmation
|
||||
ENABLE_TOOLS=false
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
discord.py
|
||||
openai
|
||||
python-dotenv
|
||||
requests
|
||||
discord.py>=2.0.0
|
||||
openai>=1.0.0
|
||||
python-dotenv>=1.0.0
|
||||
aiohttp>=3.8.0
|
||||
tiktoken>=0.5.0
|
||||
Reference in New Issue
Block a user