removing the tools calls
All checks were successful
OpenWebUI Discord Bot / Build-and-Push (push) Successful in 1m10s
All checks were successful
OpenWebUI Discord Bot / Build-and-Push (push) Successful in 1m10s
This commit is contained in:
parent
1dd3e50729
commit
b5a435913e
@ -1,100 +0,0 @@
|
|||||||
"""
|
|
||||||
title: Bedrock Image Description
|
|
||||||
author: Josh Knapp
|
|
||||||
version: 0.1.0
|
|
||||||
description="Provide Direct Bedrock call for image generation"
|
|
||||||
"""
|
|
||||||
|
|
||||||
import subprocess
|
|
||||||
import json
|
|
||||||
from pydantic import BaseModel, Field
|
|
||||||
|
|
||||||
|
|
||||||
# Try to import boto3, install if not present
|
|
||||||
try:
|
|
||||||
import boto3
|
|
||||||
except ImportError:
|
|
||||||
print("boto3 package not found. Attempting to install...")
|
|
||||||
try:
|
|
||||||
subprocess.check_call([sys.executable, "-m", "pip", "install", "boto3"])
|
|
||||||
import boto3
|
|
||||||
|
|
||||||
print("boto3 package installed successfully")
|
|
||||||
except subprocess.CalledProcessError as e:
|
|
||||||
print(f"Failed to install boto3 package: {str(e)}")
|
|
||||||
|
|
||||||
|
|
||||||
class Tools:
|
|
||||||
class Valves(BaseModel):
|
|
||||||
AWS_ACCESS_KEY: str = Field(
|
|
||||||
default="",
|
|
||||||
description="AWS Access Key",
|
|
||||||
)
|
|
||||||
AWS_SECRET_KEY: str = Field(
|
|
||||||
default="",
|
|
||||||
description="AWS Secret Key",
|
|
||||||
)
|
|
||||||
AWS_BEDROCK_MODEL: str = Field(
|
|
||||||
default="",
|
|
||||||
description="AWS Bedrock Model to use"
|
|
||||||
)
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
self.valves = self.Valves()
|
|
||||||
pass
|
|
||||||
|
|
||||||
def analyze_image(self, base64_image: str) -> str:
|
|
||||||
"""
|
|
||||||
Analyze an image using AWS Bedrock's vision model
|
|
||||||
Args:
|
|
||||||
base64_image (str): Base64 encoded image string
|
|
||||||
Returns:
|
|
||||||
str: Description of the image
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# Initialize Bedrock runtime client
|
|
||||||
bedrock = boto3.client(
|
|
||||||
service_name="bedrock-runtime",
|
|
||||||
aws_access_key_id=self.valves.AWS_ACCESS_KEY,
|
|
||||||
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
|
|
||||||
region_name="us-east-1" # or your preferred region
|
|
||||||
)
|
|
||||||
|
|
||||||
# Prepare the request body
|
|
||||||
request_body = {
|
|
||||||
"anthropic_version": "bedrock-2023-05-31",
|
|
||||||
"max_tokens": 1000,
|
|
||||||
"messages": [
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": [
|
|
||||||
{
|
|
||||||
"type": "image",
|
|
||||||
"source": {
|
|
||||||
"type": "base64",
|
|
||||||
"media_type": "image/jpeg",
|
|
||||||
"data": base64_image
|
|
||||||
}
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"type": "text",
|
|
||||||
"text": "Please describe this image in detail."
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
|
|
||||||
# Invoke the model
|
|
||||||
response = bedrock.invoke_model(
|
|
||||||
modelId=self.valves.AWS_BEDROCK_MODEL,
|
|
||||||
body=json.dumps(request_body)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Parse and return the response
|
|
||||||
response_body = json.loads(response['body'].read())
|
|
||||||
return response_body['messages'][0]['content'][0]['text']
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error analyzing image: {str(e)}")
|
|
||||||
return f"Error analyzing image: {str(e)}"
|
|
@ -1,5 +0,0 @@
|
|||||||
For any model to use this tool, you must set the valve values, and add something to the model to let it know to use the tool.
|
|
||||||
|
|
||||||
```
|
|
||||||
You have access to a tool that allows you to get descriptions of images called "Bedrock Image Description". Any image handling should be sent through this tool.
|
|
||||||
```
|
|
@ -61,35 +61,10 @@ async def get_chat_history(channel, limit=100):
|
|||||||
messages.append(content)
|
messages.append(content)
|
||||||
return "\n".join(reversed(messages))
|
return "\n".join(reversed(messages))
|
||||||
|
|
||||||
async def get_available_tools() -> List[Dict[str, Any]]:
|
|
||||||
"""Fetch available tools from OpenWebUI API."""
|
|
||||||
try:
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
"Authorization": f"Bearer {OPENAI_API_KEY}"
|
|
||||||
}
|
|
||||||
|
|
||||||
async with aiohttp.ClientSession() as session:
|
|
||||||
async with session.get(
|
|
||||||
f"{OPENWEBUI_API_BASE}/v1/tools/list",
|
|
||||||
headers=headers
|
|
||||||
) as response:
|
|
||||||
if response.status == 200:
|
|
||||||
tools = await response.json()
|
|
||||||
return tools
|
|
||||||
else:
|
|
||||||
print(f"Error fetching tools: {await response.text()}")
|
|
||||||
return []
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error fetching tools: {str(e)}")
|
|
||||||
return []
|
|
||||||
|
|
||||||
async def get_ai_response(context, user_message, image_urls=None):
|
async def get_ai_response(context, user_message, image_urls=None):
|
||||||
# Fetch available tools
|
|
||||||
tools = await get_available_tools()
|
|
||||||
tools_json = json.dumps(tools, indent=2)
|
|
||||||
|
|
||||||
system_message = f"\"\"\"Previous conversation context:{context}\nAvailable Tools: {tools_json}\nReturn an empty string if no tools match the query." + """If a function tool matches, construct and return a JSON object in the format {"name": "functionName", "parameters": {"requiredFunctionParamKey": "requiredFunctionParamValue\"}} using the appropriate tool and its parameters. Only return the object and limit the response to the JSON object without additional text."""
|
system_message = f"\"\"\"Previous conversation context:{context}"""
|
||||||
|
|
||||||
messages = [
|
messages = [
|
||||||
{"role": "system", "content": system_message},
|
{"role": "system", "content": system_message},
|
||||||
|
Loading…
x
Reference in New Issue
Block a user