233 lines
10 KiB
Python
233 lines
10 KiB
Python
"""
|
|
title:Claude Sonnet 3.7 Reasoning for Bedrock
|
|
author: Josh Knapp
|
|
date: 2025-03-10
|
|
license: MIT
|
|
description: A pipeline to connect to Amazon Bedrock's Claude 3.7 Sonnet model for text generation and reasoning tasks
|
|
requirements: requests, boto3
|
|
"""
|
|
|
|
import base64
|
|
import json
|
|
import logging
|
|
from io import BytesIO
|
|
from typing import List, Union, Generator, Iterator, Dict, Optional, Tuple, Any, Union
|
|
import boto3
|
|
from pydantic import BaseModel
|
|
|
|
import os
|
|
import requests
|
|
|
|
from utils.pipelines.main import pop_system_message
|
|
|
|
REASONING_EFFORT_BUDGET_TOKEN_MAP = {
|
|
"none": None,
|
|
"low": 1024,
|
|
"medium": 4096,
|
|
"high": 16384,
|
|
"max": 32768,
|
|
}
|
|
|
|
# Maximum combined token limit for Claude 3.7
|
|
MAX_COMBINED_TOKENS = 64000
|
|
|
|
|
|
class Pipeline:
|
|
class Valves(BaseModel):
|
|
USE_AWS_CREDS: bool = False
|
|
AWS_ACCESS_KEY: str = ""
|
|
AWS_SECRET_KEY: str = ""
|
|
AWS_REGION_NAME: str = "us-east-1"
|
|
MODEL_ID: str = "us.anthropic.claude-3-7-sonnet-20250219-v1:0"
|
|
|
|
def __init__(self):
|
|
self.type = "manifold"
|
|
# Optionally, you can set the id and name of the pipeline.
|
|
# Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline.
|
|
# The identifier must be unique across all pipelines.
|
|
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
|
|
# self.id = "openai_pipeline"
|
|
self.name = "Bedrock: "
|
|
|
|
self.valves = self.Valves(
|
|
**{
|
|
"USE_AWS_CREDS": os.getenv("USE_AWS_CREDS", "false").lower() == "true",
|
|
"AWS_ACCESS_KEY": os.getenv("AWS_ACCESS_KEY", "your-aws-access-key-here"),
|
|
"AWS_SECRET_KEY": os.getenv("AWS_SECRET_KEY", "your-aws-secret-key-here"),
|
|
"AWS_REGION_NAME": os.getenv("AWS_REGION_NAME", "your-aws-region-name-here"),
|
|
"MODEL_ID": os.getenv("MODEL_ID", "us.anthropic.claude-3-7-sonnet-20250219-v1:0")
|
|
}
|
|
)
|
|
if (self.valves.USE_AWS_CREDS is True):
|
|
self.bedrock = boto3.client(aws_access_key_id=self.valves.AWS_ACCESS_KEY,
|
|
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
|
|
service_name="bedrock",
|
|
region_name=self.valves.AWS_REGION_NAME)
|
|
self.bedrock_runtime = boto3.client(aws_access_key_id=self.valves.AWS_ACCESS_KEY,
|
|
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
|
|
service_name="bedrock-runtime",
|
|
region_name=self.valves.AWS_REGION_NAME)
|
|
else:
|
|
self.bedrock = boto3.client(service_name="bedrock",
|
|
region_name=self.valves.AWS_REGION_NAME)
|
|
self.bedrock_runtime = boto3.client(service_name="bedrock-runtime",
|
|
region_name=self.valves.AWS_REGION_NAME)
|
|
|
|
def get_models(self):
|
|
return [
|
|
{"id": self.valves.MODEL_ID, "name": f"{self.valves.MODEL_ID}-Reasoning"}
|
|
]
|
|
|
|
async def on_startup(self):
|
|
# This function is called when the server is started.
|
|
print(f"on_startup:{__name__}")
|
|
pass
|
|
|
|
async def on_shutdown(self):
|
|
# This function is called when the server is stopped.
|
|
print(f"on_shutdown:{__name__}")
|
|
pass
|
|
|
|
async def on_valves_updated(self):
|
|
# This function is called when the valves are updated.
|
|
print(f"on_valves_updated:{__name__}")
|
|
if (self.valves.USE_AWS_CREDS is True):
|
|
self.bedrock = boto3.client(aws_access_key_id=self.valves.AWS_ACCESS_KEY,
|
|
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
|
|
service_name="bedrock",
|
|
region_name=self.valves.AWS_REGION_NAME)
|
|
self.bedrock_runtime = boto3.client(aws_access_key_id=self.valves.AWS_ACCESS_KEY,
|
|
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
|
|
service_name="bedrock-runtime",
|
|
region_name=self.valves.AWS_REGION_NAME)
|
|
else:
|
|
self.bedrock = boto3.client(service_name="bedrock",
|
|
region_name=self.valves.AWS_REGION_NAME)
|
|
self.bedrock_runtime = boto3.client(service_name="bedrock-runtime",
|
|
region_name=self.valves.AWS_REGION_NAME)
|
|
|
|
def pipelines(self) -> List[dict]:
|
|
return self.get_models()
|
|
|
|
def pipe(
|
|
self, user_message: str, model_id: str, messages: List[dict], body: dict
|
|
) -> Union[str, Generator, Iterator]:
|
|
# This is where you can add your custom pipelines like RAG.
|
|
print(f"pipe:{__name__}")
|
|
|
|
system_message, messages = pop_system_message(messages)
|
|
|
|
logging.info(f"pop_system_message: {json.dumps(messages)}")
|
|
|
|
try:
|
|
processed_messages = []
|
|
image_count = 0
|
|
for message in messages:
|
|
processed_content = []
|
|
if isinstance(message.get("content"), list):
|
|
for item in message["content"]:
|
|
if item["type"] == "text":
|
|
processed_content.append({"text": item["text"]})
|
|
elif item["type"] == "image_url":
|
|
if image_count >= 20:
|
|
raise ValueError("Maximum of 20 images per API call exceeded")
|
|
processed_image = self.process_image(item["image_url"])
|
|
processed_content.append(processed_image)
|
|
image_count += 1
|
|
else:
|
|
processed_content = [{"text": message.get("content", "")}]
|
|
|
|
processed_messages.append({"role": message["role"], "content": processed_content})
|
|
|
|
# Set budget tokens for reasoning
|
|
reasoning_effort = body.get("reasoning_effort", "medium")
|
|
budget_tokens = REASONING_EFFORT_BUDGET_TOKEN_MAP.get(reasoning_effort)
|
|
|
|
# Allow users to input an integer value representing budget tokens
|
|
if (
|
|
not budget_tokens
|
|
and reasoning_effort not in REASONING_EFFORT_BUDGET_TOKEN_MAP.keys()
|
|
):
|
|
try:
|
|
budget_tokens = int(reasoning_effort)
|
|
except ValueError as e:
|
|
print("Failed to convert reasoning effort to int", e)
|
|
budget_tokens = 4096
|
|
|
|
# Do not use thinking if budget_tokens is set to None
|
|
|
|
if budget_tokens is not None:
|
|
reasoning_config = {
|
|
"thinking": {
|
|
"type": "enabled",
|
|
"budget_tokens": budget_tokens
|
|
}
|
|
}
|
|
else:
|
|
reasoning_config = {}
|
|
payload = {"modelId": model_id,
|
|
"messages": processed_messages,
|
|
"system": system_message if system_message else 'you are an intelligent ai assistant',
|
|
"inferenceConfig": {"temperature": 1, "maxTokens": body.get("max_tokens", MAX_COMBINED_TOKENS)},
|
|
"additionalModelRequestFields": reasoning_config
|
|
}
|
|
if body.get("stream", False):
|
|
return self.stream_response(model_id, payload)
|
|
else:
|
|
return self.get_completion(model_id, payload)
|
|
except Exception as e:
|
|
return f"Error: {e}"
|
|
|
|
def process_image(self, image: str):
|
|
img_stream = None
|
|
if image["url"].startswith("data:image"):
|
|
if ',' in image["url"]:
|
|
base64_string = image["url"].split(',')[1]
|
|
image_data = base64.b64decode(base64_string)
|
|
|
|
img_stream = BytesIO(image_data)
|
|
else:
|
|
img_stream = requests.get(image["url"]).content
|
|
return {
|
|
"image": {"format": "png" if image["url"].endswith(".png") else "jpeg",
|
|
"source": {"bytes": img_stream.read()}}
|
|
}
|
|
|
|
def stream_response(self, model_id: str, payload: dict) -> Generator:
|
|
# https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/bedrock-runtime/client/converse_stream.html
|
|
streaming_response = self.bedrock_runtime.converse_stream(**payload)
|
|
thinking_block = None
|
|
for chunk in streaming_response["stream"]:
|
|
if "contentBlockStop" in chunk and chunk["contentBlockStop"]["contentBlockIndex"] == thinking_block:
|
|
print("Thinking End")
|
|
yield '</thinking>\n\n'
|
|
if "contentBlockDelta" in chunk:
|
|
delta = chunk["contentBlockDelta"]["delta"]
|
|
|
|
# Handle reasoning content (Chain of Thought)
|
|
if "reasoningContent" in delta and "text" in delta["reasoningContent"]:
|
|
if thinking_block is None:
|
|
thinking_block = chunk["contentBlockDelta"]["contentBlockIndex"]
|
|
yield '<thinking>\n'
|
|
yield delta["reasoningContent"]["text"]
|
|
|
|
# Handle regular response text
|
|
if "text" in delta:
|
|
yield delta["text"]
|
|
|
|
def get_completion(self, model_id: str, payload: dict) -> str:
|
|
# https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/bedrock-runtime/client/converse.html
|
|
response = self.bedrock_runtime.converse(**payload)
|
|
content_blocks = response["output"]["message"]["content"]
|
|
|
|
reasoning = None
|
|
text = None
|
|
|
|
# Process each content block to find reasoning and response text
|
|
for block in content_blocks:
|
|
if "reasoningContent" in block:
|
|
reasoning = block["reasoningContent"]["reasoningText"]["text"]
|
|
if "text" in block:
|
|
text = block["text"]
|
|
combined_text = f'<details type="reasoning" done="true">\n<summary>Thinking…</summary>\n{reasoning}\n</details>\n\n {text}'
|
|
return combined_text |