
Introduction	to	jq	-	part	2	(HPR	Show	4114)
Options	to	jq;	learning	about	filters

Dave	Morriss

Overview

In	the	last	episode	we	looked	at	how	JSON	data	is	structured	and	saw	how	jq	could	be	used	to	format	and	print	this	type	of
data.

In	this	episode	we'll	visit	a	few	of	the	options	to	the	jq	command	and	then	start	on	the	filters	written	in	the	jq	language.

Options	used	by	jq

In	general	the	jq	command	is	invoked	thus:

jq	[options...]	filter	[files...]

It	can	be	given	data	in	files	or	sent	to	it	via	the	STDIN	(standard	in)	channel.	We	saw	data	being	sent	this	way	in	the	last
episode,	having	been	downloaded	by	curl.

There	are	many	options	to	the	command,	and	these	are	listed	in	the	manual	page	and	in	the	online	manual.	We	will	look	at	a
few	of	them	here:

--help	or	-h

Output	the	jq	help	and	exit	with	zero.

-f	filename	or	--from-file	filename

Read	filter	from	the	file	rather	than	from	a	command	line,	like	awk´s	-f	option.	You	can	also	use	´#´	to	make	comments	in
the	file.

--compact-output	or	-c

By	default,	jq	pretty-prints	JSON	output.	Using	this	option	will	result	in	more	compact	output	by	instead	putting	each
JSON	object	on	a	single	line.

--color-output	or	-C	and	--monochrome-output	or	-M

By	default,	jq	outputs	colored	JSON	if	writing	to	a	terminal.	You	can	force	it	to	produce	color	even	if	writing	to	a	pipe	or	a
file	using	-C,	and	disable	color	with	-M.

--tab

Use	a	tab	for	each	indentation	level	instead	of	two	spaces.

--indent	n

Use	the	given	number	of	spaces	(no	more	than	7)	for	indentation.

Notes

The	-C	option	is	useful	when	printing	output	to	the	less	command	with	the	colours	that	jq	normally	generates.	Use	this:

jq	-C	'.'	file.json	|	less	-R

The	-R	option	to	less	allows	colour	escape	sequences	to	pass	through.

Do	not	do	what	I	did	recently.	Accidentally	leaving	the	-C	option	on	the	command	caused	formatted.json	to	contain	all	the
escape	codes	used	to	colour	the	output:

$	jq	-C	'.'	file.json	>	formatted.json

https://hackerpublicradio.org/eps/hpr4104/index.html
https://jqlang.github.io/jq/manual/


This	is	why	jq	normally	only	generates	coloured	output	when	writing	to	the	terminal.

Filters	in	jq

As	we	saw	in	the	last	episode	JSON	can	contain	arrays	and	objects.	Arrays	are	enclosed	in	square	brackets	and	their	elements
can	be	any	of	the	data	types	we	saw	last	time.	So,	arrays	of	arrays,	arrays	of	objects,	and	arrays	of	both	of	these	are	all
possible.

Objects	contain	collections	of	keyed	items	where	the	keys	are	strings	of	various	types	and	the	values	they	are	associated	with
can	be	any	of	the	data	types.

JSON	Examples

Simple	arrays:

[1,2,3]
[1,2,3,[4,5,6]]
["Hacker","Public","Radio"]
["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"]

Simple	object:

{	"name":	"Hacker	Public	Radio",	"type":	"podcast"}

This	more	complex	object	was	generated	by	the	Random	User	Generator	API.	It	is	a	subset	of	what	can	be	obtained	from	this
site.

{
		"gender":	"female",
		"name":	{
				"title":	"Mrs",
				"first":	"Jenny",
				"last":	"Silva"
		},
		"dob":	{
				"date":	"1950-01-03T21:38:19.583Z",
				"age":	74
		},
		"nat":	"GB"
}

This	one	comes	from	the	file	countries.json	from	the	Github	project	mledoze/countries.	It	is	a	subset	of	the	entry	for	Mexico.

{
		"name":	{
				"common":	"Mexico",
				"official":	"United	Mexican	States",
				"native":	{
						"spa":	{
								"official":	"Estados	Unidos	Mexicanos",
								"common":	"México"
						}
				}
		},
		"capital":	[
				"Mexico	City"
		],
		"borders":	[
				"BLZ",
				"GTM",
				"USA"
		]
}

Identity	filter

This	is	the	simplest	filter	which	we	already	encountered	in	episode	1:	'.'.	It	takes	its	input	and	produces	the	same	value	as
output.	Since	the	default	action	is	to	pretty-print	the	output	it	formats	the	data:

$	echo	'["Hacker","Public","Radio"]'	|	jq	.
[
		"Hacker",
		"Public",
		"Radio"
]

https://randomuser.me/documentation
https://github.com/mledoze/countries


Notice	that	the	filter	is	not	enclosed	in	quotes	in	this	example.	This	is	usually	fine	for	the	simplest	filters	which	don't	contain
any	characters	which	are	of	significance	to	the	shell.	It's	probably	a	good	idea	to	always	use	(single)	quotes	however.

There	may	be	considerations	regarding	how	jq	handles	numbers.	Consult	the	jq	documentation	for	details.

Object	Identifier-Index	filter

This	form	of	filter	refers	to	object	keys.	A	particular	key	is	usually	referenced	with	a	full-stop	followed	by	the	name	of	the	key.

In	the	HPR	statistics	data	there	is	a	top-level	key	"hosts"	which	refers	to	the	number	of	currently	registered	hosts.	This	can	be
obtained	thus	(assuming	the	JSON	is	in	the	file	stats.json):

$	jq	'.hosts'	stats.json
357

The	statistics	file	contains	a	key	'stats_generated'	which	marks	a	Unix	time	value	(seconds	since	the	Unix	Epoch	1970-01-01).
This	can	be	decoded	on	the	command	line	like	this:

$	date	-d	"@$(jq	'.stats_generated'	stats.json)"	+'%F	%T'
2024-04-18	15:30:07

Here	the	'-d'	option	to	date	provides	the	date	to	print,	and	if	it	begins	with	a	'@'	character	it's	interpreted	as	seconds	since	the
Epoch.	Note	that	the	result	is	in	my	local	time	zone	which	is	currently	UTC	+	0100	(aka	BST).

Using	object	keys	in	this	way	only	works	if	the	keys	contain	only	ASCII	characters	and	underscores	and	don't	start	with	a	digit.
To	use	other	characters	it's	necessary	to	enclose	the	key	in	double	quotes	or	square	brackets	and	double	quotes.	So,	assuming
the	key	we	used	earlier	had	been	altered	to	'stats-generated'	we	could	use	either	of	these	expressions:

."stats-generated"

.["stats-generated"]

Of	course,	the	.[<string>]	form	is	valid	in	all	contexts.	Here	<string>	represents	a	JSON	string	in	double	quotes.	The	jq
documentation	refers	to	this	as	an	Object	Index.

What	if	you	want	the	next_free	value	discussed	in	the	last	episode	(number	of	shows	until	the	next	free	slot)?	Just	typing	the
following	will	not	work:

$	jq	'.next_free'	stats.json
null

This	is	showing	that	there	is	no	key	next_free	at	the	top	level	of	the	object,	the	key	we	want	is	in	the	object	with	the	key	slot.

If	you	request	the	slot	key	this	will	happen:

$	jq	'.slot'	stats.json
{
		"next_free":	8,
		"no_media":	0
}

Here	an	object	has	been	returned,	but	we	actually	want	the	value	within	it,	as	we	know.

This	is	where	we	can	chain	filters	like	this:

$	jq	'.slot	|	.next_free'	stats.json
8

The	pipe	symbol	causes	the	result	of	the	first	filter	to	be	passed	to	the	second	filter.	Note	that	the	pipe	here	is	not	the	same	as
the	Unix	pipe,	although	it	looks	the	same

There	is	a	shorthand	way	of	doing	this	"chaining":

$	jq	'.slot.next_free'	stats.json
8

This	is	a	bit	like	a	file	system	path,	and	makes	the	extraction	of	desired	data	easier	to	visualise	and	therefore	quite
straightforward,	I	think.

Array	index	filter

We	have	seen	the	object	index	filter	.[<string>]	where	<string>	represents	a	key	in	the	object	we	are	working	with.

https://jqlang.github.io/jq/manual/


It	makes	sense	for	array	indexing	to	be	.[<number>]	where	<number>	represents	an	integer	starting	at	zero,	or	a	negative
integer.	The	meaning	of	the	negative	number	is	to	count	backwards	from	the	last	element	of	the	array	(which	is	-1).

So,	some	examples	might	be:

$	echo	'["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"]'	|	jq	'.[1]'
"Monday"

$	echo	'["Sun","Mon","Tue","Wed","Thu","Fri","Sat"]'	|	jq	'.[-1]'
"Sat"

$	echo	'[1,	2,	3,	[4,	5,	6]]'	|	jq	'.[-1]'
[
		4,
		5,
		6
]

We	will	look	at	more	of	the	basic	filters	in	the	next	episode.

Links

jq:
GitHub	page
Downloading	jq
The	jq	manual
Wikipedia	page	about	the	jq	programming	language

Test	data	sources:
Random	User	Generator	API
Github	project	mledoze/countries

https://jqlang.github.io/jq/
https://jqlang.github.io/jq/download/
https://jqlang.github.io/jq/manual/
https://en.wikipedia.org/wiki/Jq_(programming_language)
https://randomuser.me/documentation
https://github.com/mledoze/countries

