All checks were successful
OpenWebUI Discord Bot / Build-and-Push (push) Successful in 1m2s
Major improvements to LiteLLM Discord bot with MCP (Model Context Protocol) tools support: Features added: - MCP tools discovery and integration with LiteLLM proxy - Fetch and convert 40+ GitHub MCP tools to OpenAI format - Tool calling flow with placeholder execution (pending MCP endpoint confirmation) - Dynamic tool injection based on LiteLLM MCP server configuration - Enhanced system prompt with tool usage guidance - Added ENABLE_TOOLS environment variable for easy toggle - Comprehensive debug logging for troubleshooting Technical changes: - Added httpx>=0.25.0 dependency for async MCP API calls - Implemented get_available_mcp_tools() to query /v1/mcp/server and /v1/mcp/tools endpoints - Convert MCP tool schemas to OpenAI function calling format - Detect and handle tool_calls in model responses - Added system_prompt.txt for customizable bot behavior - Updated README with better documentation and setup instructions - Created claude.md with detailed development notes and upgrade roadmap Configuration: - New ENABLE_TOOLS flag in .env to control MCP integration - DEBUG_LOGGING for detailed execution logs - System prompt file support for easy customization Known limitations: - Tool execution currently uses placeholders (MCP execution endpoint needs verification) - Limited to 50 tools to avoid overwhelming the model - Requires LiteLLM proxy with MCP server configured Next steps: - Verify correct LiteLLM MCP tool execution endpoint - Implement actual tool execution via MCP proxy - Test end-to-end GitHub operations through Discord 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
481 lines
19 KiB
Python
481 lines
19 KiB
Python
import os
|
|
import discord
|
|
from discord.ext import commands
|
|
from openai import OpenAI
|
|
import base64
|
|
from dotenv import load_dotenv
|
|
import aiohttp
|
|
from typing import Dict, Any, List
|
|
import tiktoken
|
|
import httpx
|
|
|
|
# Load environment variables
|
|
load_dotenv()
|
|
|
|
# Get environment variables
|
|
DISCORD_TOKEN = os.getenv('DISCORD_TOKEN')
|
|
LITELLM_API_KEY = os.getenv('LITELLM_API_KEY')
|
|
LITELLM_API_BASE = os.getenv('LITELLM_API_BASE')
|
|
MODEL_NAME = os.getenv('MODEL_NAME')
|
|
SYSTEM_PROMPT_FILE = os.getenv('SYSTEM_PROMPT_FILE', './system_prompt.txt')
|
|
MAX_HISTORY_TOKENS = int(os.getenv('MAX_HISTORY_TOKENS', '3000'))
|
|
DEBUG_LOGGING = os.getenv('DEBUG_LOGGING', 'false').lower() == 'true'
|
|
ENABLE_TOOLS = os.getenv('ENABLE_TOOLS', 'false').lower() == 'true'
|
|
|
|
def debug_log(message: str):
|
|
"""Print debug message if DEBUG_LOGGING is enabled"""
|
|
if DEBUG_LOGGING:
|
|
print(f"[DEBUG] {message}")
|
|
|
|
# Load system prompt from file
|
|
def load_system_prompt():
|
|
"""Load system prompt from file, with fallback to default"""
|
|
try:
|
|
with open(SYSTEM_PROMPT_FILE, 'r', encoding='utf-8') as f:
|
|
return f.read().strip()
|
|
except FileNotFoundError:
|
|
return "You are a helpful AI assistant integrated into Discord."
|
|
|
|
SYSTEM_PROMPT = load_system_prompt()
|
|
|
|
# Configure OpenAI client to point to LiteLLM
|
|
client = OpenAI(
|
|
api_key=LITELLM_API_KEY,
|
|
base_url=LITELLM_API_BASE # e.g., "http://localhost:4000"
|
|
)
|
|
|
|
# Initialize tokenizer for token counting
|
|
try:
|
|
encoding = tiktoken.encoding_for_model("gpt-4")
|
|
except KeyError:
|
|
encoding = tiktoken.get_encoding("cl100k_base")
|
|
|
|
# Initialize Discord bot
|
|
intents = discord.Intents.default()
|
|
intents.message_content = True
|
|
intents.messages = True
|
|
bot = commands.Bot(command_prefix='!', intents=intents)
|
|
|
|
# Message history cache - stores recent conversations per channel
|
|
channel_history: Dict[int, List[Dict[str, Any]]] = {}
|
|
|
|
def count_tokens(text: str) -> int:
|
|
"""Count tokens in a text string"""
|
|
try:
|
|
return len(encoding.encode(text))
|
|
except Exception:
|
|
# Fallback: rough estimate (1 token ≈ 4 characters)
|
|
return len(text) // 4
|
|
|
|
async def download_image(url: str) -> str | None:
|
|
"""Download image and convert to base64 using async aiohttp"""
|
|
try:
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.get(url, timeout=aiohttp.ClientTimeout(total=10)) as response:
|
|
if response.status == 200:
|
|
image_data = await response.read()
|
|
base64_image = base64.b64encode(image_data).decode('utf-8')
|
|
return base64_image
|
|
except Exception as e:
|
|
print(f"Error downloading image from {url}: {e}")
|
|
return None
|
|
|
|
async def get_available_mcp_tools():
|
|
"""Query LiteLLM for available MCP servers and tools, convert to OpenAI format"""
|
|
try:
|
|
base_url = LITELLM_API_BASE.rstrip('/')
|
|
headers = {"x-litellm-api-key": LITELLM_API_KEY}
|
|
|
|
async with httpx.AsyncClient(timeout=30.0) as http_client:
|
|
# Get MCP server configuration
|
|
server_response = await http_client.get(
|
|
f"{base_url}/v1/mcp/server",
|
|
headers=headers
|
|
)
|
|
|
|
if server_response.status_code == 200:
|
|
server_info = server_response.json()
|
|
debug_log(f"MCP server info: found {len(server_info) if isinstance(server_info, list) else 0} servers")
|
|
|
|
# Get available MCP tools
|
|
tools_response = await http_client.get(
|
|
f"{base_url}/v1/mcp/tools",
|
|
headers=headers
|
|
)
|
|
|
|
if tools_response.status_code == 200:
|
|
tools_data = tools_response.json()
|
|
|
|
# Tools come in format: {"tools": [...]}
|
|
mcp_tools = tools_data.get("tools", []) if isinstance(tools_data, dict) else tools_data
|
|
debug_log(f"Found {len(mcp_tools) if isinstance(mcp_tools, list) else 0} MCP tools")
|
|
|
|
# Convert MCP tools to OpenAI function calling format
|
|
openai_tools = []
|
|
for tool in mcp_tools[:50]: # Limit to first 50 tools to avoid overwhelming the model
|
|
if isinstance(tool, dict) and "name" in tool:
|
|
openai_tool = {
|
|
"type": "function",
|
|
"function": {
|
|
"name": tool["name"],
|
|
"description": tool.get("description", ""),
|
|
"parameters": tool.get("inputSchema", {})
|
|
}
|
|
}
|
|
openai_tools.append(openai_tool)
|
|
|
|
debug_log(f"Converted {len(openai_tools)} tools to OpenAI format")
|
|
|
|
# Return both server info and converted tools
|
|
return {
|
|
"server": server_info,
|
|
"tools": openai_tools,
|
|
"tool_count": len(openai_tools)
|
|
}
|
|
else:
|
|
debug_log(f"MCP tools endpoint returned {tools_response.status_code}: {tools_response.text}")
|
|
else:
|
|
debug_log(f"MCP server endpoint returned {server_response.status_code}: {server_response.text}")
|
|
|
|
except Exception as e:
|
|
debug_log(f"Error fetching MCP tools: {e}")
|
|
|
|
return None
|
|
|
|
async def get_chat_history(channel, bot_user_id: int, limit: int = 50) -> List[Dict[str, Any]]:
|
|
"""
|
|
Retrieve chat history and format as proper conversation messages.
|
|
Only includes messages relevant to bot conversations.
|
|
Returns list of message dicts with proper role attribution.
|
|
Supports both regular channels and threads.
|
|
"""
|
|
messages = []
|
|
total_tokens = 0
|
|
|
|
# Check if this is a thread
|
|
is_thread = isinstance(channel, discord.Thread)
|
|
|
|
debug_log(f"Fetching history - is_thread: {is_thread}, channel: {channel.name if hasattr(channel, 'name') else 'DM'}")
|
|
|
|
# For threads, we want ALL messages in the thread (not just bot-related)
|
|
# For channels, we only want bot-related messages
|
|
|
|
message_count = 0
|
|
skipped_system = 0
|
|
|
|
# For threads, fetch the context including parent message if it exists
|
|
if is_thread:
|
|
try:
|
|
# Get the starter message (first message in thread)
|
|
if channel.starter_message:
|
|
starter = channel.starter_message
|
|
else:
|
|
starter = await channel.fetch_message(channel.id)
|
|
|
|
# If the starter message is replying to another message, fetch that parent
|
|
if starter and starter.reference and starter.reference.message_id:
|
|
try:
|
|
parent_message = await channel.parent.fetch_message(starter.reference.message_id)
|
|
if parent_message and (parent_message.type == discord.MessageType.default or parent_message.type == discord.MessageType.reply):
|
|
is_bot_parent = parent_message.author.id == bot_user_id
|
|
role = "assistant" if is_bot_parent else "user"
|
|
content = f"{parent_message.author.display_name}: {parent_message.content}" if not is_bot_parent else parent_message.content
|
|
|
|
# Remove bot mention if present
|
|
if not is_bot_parent and bot_user_id:
|
|
content = content.replace(f'<@{bot_user_id}>', '').strip()
|
|
|
|
msg = {"role": role, "content": content}
|
|
msg_tokens = count_tokens(content)
|
|
|
|
if msg_tokens <= MAX_HISTORY_TOKENS:
|
|
messages.append(msg)
|
|
total_tokens += msg_tokens
|
|
message_count += 1
|
|
debug_log(f"Added parent message: role={role}, content_preview={content[:50]}...")
|
|
except Exception as e:
|
|
debug_log(f"Could not fetch parent message: {e}")
|
|
|
|
# Add the starter message itself
|
|
if starter and (starter.type == discord.MessageType.default or starter.type == discord.MessageType.reply):
|
|
is_bot_starter = starter.author.id == bot_user_id
|
|
role = "assistant" if is_bot_starter else "user"
|
|
content = f"{starter.author.display_name}: {starter.content}" if not is_bot_starter else starter.content
|
|
|
|
# Remove bot mention if present
|
|
if not is_bot_starter and bot_user_id:
|
|
content = content.replace(f'<@{bot_user_id}>', '').strip()
|
|
|
|
msg = {"role": role, "content": content}
|
|
msg_tokens = count_tokens(content)
|
|
|
|
if total_tokens + msg_tokens <= MAX_HISTORY_TOKENS:
|
|
messages.append(msg)
|
|
total_tokens += msg_tokens
|
|
message_count += 1
|
|
debug_log(f"Added thread starter: role={role}, content_preview={content[:50]}...")
|
|
except Exception as e:
|
|
debug_log(f"Could not fetch thread messages: {e}")
|
|
|
|
# Fetch history from the channel/thread
|
|
async for message in channel.history(limit=limit):
|
|
message_count += 1
|
|
|
|
# Skip system messages (thread starters, pins, etc.)
|
|
if message.type != discord.MessageType.default and message.type != discord.MessageType.reply:
|
|
skipped_system += 1
|
|
debug_log(f"Skipping system message type: {message.type}")
|
|
continue
|
|
|
|
# Determine if we should include this message
|
|
is_bot_message = message.author.id == bot_user_id
|
|
is_bot_mentioned = any(mention.id == bot_user_id for mention in message.mentions)
|
|
is_dm = isinstance(channel, discord.DMChannel)
|
|
|
|
# In threads: include ALL messages for full context
|
|
# In regular channels: only include bot-related messages
|
|
# In DMs: include all messages
|
|
if is_thread or is_dm:
|
|
should_include = True
|
|
else:
|
|
should_include = is_bot_message or is_bot_mentioned
|
|
|
|
if not should_include:
|
|
continue
|
|
|
|
# Determine role
|
|
role = "assistant" if is_bot_message else "user"
|
|
|
|
# Build content with author name in threads for multi-user context
|
|
if is_thread and not is_bot_message:
|
|
# Include username in threads for clarity
|
|
content = f"{message.author.display_name}: {message.content}"
|
|
else:
|
|
content = message.content
|
|
|
|
# Remove bot mention from user messages
|
|
if not is_bot_message and is_bot_mentioned:
|
|
content = content.replace(f'<@{bot_user_id}>', '').strip()
|
|
|
|
# Note: We'll handle images separately in the main flow
|
|
# For history, we just note that images were present
|
|
if message.attachments:
|
|
image_count = sum(1 for att in message.attachments
|
|
if any(att.filename.lower().endswith(ext)
|
|
for ext in ['.png', '.jpg', '.jpeg', '.gif', '.webp']))
|
|
if image_count > 0:
|
|
content += f" [attached {image_count} image(s)]"
|
|
|
|
# Add to messages with token counting
|
|
msg = {"role": role, "content": content}
|
|
msg_tokens = count_tokens(content)
|
|
|
|
# Check if adding this message would exceed token limit
|
|
if total_tokens + msg_tokens > MAX_HISTORY_TOKENS:
|
|
break
|
|
|
|
messages.append(msg)
|
|
total_tokens += msg_tokens
|
|
debug_log(f"Added message: role={role}, content_preview={content[:50]}...")
|
|
|
|
# Reverse to get chronological order (oldest first)
|
|
debug_log(f"Processed {message_count} messages, skipped {skipped_system} system messages")
|
|
debug_log(f"Total messages collected: {len(messages)}, total tokens: {total_tokens}")
|
|
return list(reversed(messages))
|
|
|
|
|
|
async def get_ai_response(history_messages: List[Dict[str, Any]], user_message: str, image_urls: List[str] = None) -> str:
|
|
"""
|
|
Get AI response using LiteLLM with proper conversation history and tool calling support.
|
|
|
|
Args:
|
|
history_messages: List of previous conversation messages with roles
|
|
user_message: Current user message
|
|
image_urls: Optional list of image URLs to include
|
|
|
|
Returns:
|
|
AI response string
|
|
"""
|
|
# Start with system prompt
|
|
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
|
|
|
# Add conversation history
|
|
messages.extend(history_messages)
|
|
|
|
# Build current user message
|
|
if image_urls:
|
|
# Multi-modal message with text and images
|
|
content_parts = [{"type": "text", "text": user_message}]
|
|
|
|
for url in image_urls:
|
|
base64_image = await download_image(url)
|
|
if base64_image:
|
|
content_parts.append({
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": f"data:image/jpeg;base64,{base64_image}"
|
|
}
|
|
})
|
|
messages.append({"role": "user", "content": content_parts})
|
|
else:
|
|
# Text-only message
|
|
messages.append({"role": "user", "content": user_message})
|
|
|
|
try:
|
|
# Build request parameters
|
|
request_params = {
|
|
"model": MODEL_NAME,
|
|
"messages": messages,
|
|
"temperature": 0.7,
|
|
}
|
|
|
|
# Add MCP tools if enabled
|
|
if ENABLE_TOOLS:
|
|
debug_log("Tools enabled - fetching and converting MCP tools")
|
|
|
|
# Query and convert MCP tools to OpenAI format
|
|
mcp_info = await get_available_mcp_tools()
|
|
if mcp_info and isinstance(mcp_info, dict):
|
|
openai_tools = mcp_info.get("tools", [])
|
|
if openai_tools and isinstance(openai_tools, list) and len(openai_tools) > 0:
|
|
request_params["tools"] = openai_tools
|
|
request_params["tool_choice"] = "auto"
|
|
debug_log(f"Added {len(openai_tools)} tools to request")
|
|
else:
|
|
debug_log("No tools available to add to request")
|
|
else:
|
|
debug_log("Failed to fetch MCP tools")
|
|
|
|
debug_log(f"Calling chat completions with {len(request_params.get('tools', []))} tools")
|
|
response = client.chat.completions.create(**request_params)
|
|
|
|
# Handle tool calls if present
|
|
response_message = response.choices[0].message
|
|
tool_calls = getattr(response_message, 'tool_calls', None)
|
|
|
|
if tool_calls and len(tool_calls) > 0:
|
|
debug_log(f"Model requested {len(tool_calls)} tool calls")
|
|
|
|
# Add assistant's response with tool calls to messages
|
|
messages.append(response_message)
|
|
|
|
# Execute each tool call - add placeholder responses
|
|
# TODO: Implement actual MCP tool execution via LiteLLM proxy
|
|
for tool_call in tool_calls:
|
|
function_name = tool_call.function.name
|
|
function_args = tool_call.function.arguments
|
|
|
|
debug_log(f"Tool call requested: {function_name} with args: {function_args}")
|
|
|
|
# Placeholder response - in production this would execute via MCP
|
|
messages.append({
|
|
"role": "tool",
|
|
"tool_call_id": tool_call.id,
|
|
"name": function_name,
|
|
"content": f"Tool execution via MCP is being set up. Tool {function_name} was called with arguments: {function_args}"
|
|
})
|
|
|
|
# Get final response from model after tool execution
|
|
debug_log("Getting final response after tool execution")
|
|
final_response = client.chat.completions.create(**request_params)
|
|
return final_response.choices[0].message.content
|
|
|
|
return response.choices[0].message.content
|
|
|
|
except Exception as e:
|
|
error_msg = f"Error calling LiteLLM API: {str(e)}"
|
|
print(error_msg)
|
|
debug_log(f"Exception details: {e}")
|
|
return error_msg
|
|
|
|
@bot.event
|
|
async def on_message(message):
|
|
# Ignore messages from the bot itself
|
|
if message.author == bot.user:
|
|
return
|
|
|
|
# Ignore system messages (thread starter, pins, etc.)
|
|
if message.type != discord.MessageType.default and message.type != discord.MessageType.reply:
|
|
return
|
|
|
|
should_respond = False
|
|
|
|
# Check if bot was mentioned
|
|
if bot.user in message.mentions:
|
|
should_respond = True
|
|
|
|
# Check if message is a DM
|
|
if isinstance(message.channel, discord.DMChannel):
|
|
should_respond = True
|
|
|
|
# Check if message is in a thread
|
|
if isinstance(message.channel, discord.Thread):
|
|
# Check if thread was started from a bot message
|
|
try:
|
|
starter = message.channel.starter_message
|
|
if not starter:
|
|
starter = await message.channel.fetch_message(message.channel.id)
|
|
|
|
# If thread was started from bot's message, auto-respond
|
|
if starter and starter.author.id == bot.user.id:
|
|
should_respond = True
|
|
debug_log("Thread started by bot - auto-responding")
|
|
# If thread started from user message, only respond if mentioned
|
|
elif bot.user in message.mentions:
|
|
should_respond = True
|
|
debug_log("Thread started by user - responding due to mention")
|
|
except Exception as e:
|
|
debug_log(f"Could not determine thread starter: {e}")
|
|
# Default: only respond if mentioned
|
|
if bot.user in message.mentions:
|
|
should_respond = True
|
|
|
|
if should_respond:
|
|
async with message.channel.typing():
|
|
# Get chat history with proper conversation format
|
|
history_messages = await get_chat_history(message.channel, bot.user.id)
|
|
|
|
# Remove bot mention from the message
|
|
user_message = message.content.replace(f'<@{bot.user.id}>', '').strip()
|
|
|
|
# Collect image URLs from the message
|
|
image_urls = []
|
|
for attachment in message.attachments:
|
|
if any(attachment.filename.lower().endswith(ext) for ext in ['.png', '.jpg', '.jpeg', '.gif', '.webp']):
|
|
image_urls.append(attachment.url)
|
|
|
|
# Get AI response with proper conversation history
|
|
response = await get_ai_response(history_messages, user_message, image_urls if image_urls else None)
|
|
|
|
# Send response (split if too long for Discord's 2000 char limit)
|
|
if len(response) > 2000:
|
|
# Split into chunks
|
|
chunks = [response[i:i+2000] for i in range(0, len(response), 2000)]
|
|
for chunk in chunks:
|
|
await message.reply(chunk)
|
|
else:
|
|
await message.reply(response)
|
|
|
|
await bot.process_commands(message)
|
|
|
|
@bot.event
|
|
async def on_ready():
|
|
print(f'{bot.user} has connected to Discord!')
|
|
|
|
|
|
def main():
|
|
if not all([DISCORD_TOKEN, LITELLM_API_KEY, LITELLM_API_BASE, MODEL_NAME]):
|
|
print("Error: Missing required environment variables")
|
|
print(f"DISCORD_TOKEN: {'✓' if DISCORD_TOKEN else '✗'}")
|
|
print(f"LITELLM_API_KEY: {'✓' if LITELLM_API_KEY else '✗'}")
|
|
print(f"LITELLM_API_BASE: {'✓' if LITELLM_API_BASE else '✗'}")
|
|
print(f"MODEL_NAME: {'✓' if MODEL_NAME else '✗'}")
|
|
return
|
|
|
|
print(f"System Prompt loaded from: {SYSTEM_PROMPT_FILE}")
|
|
print(f"Max history tokens: {MAX_HISTORY_TOKENS}")
|
|
bot.run(DISCORD_TOKEN)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|